Publications

publications by categories in reversed chronological order. generated by jekyll-scholar.
note: * indicates equal contributions. † indicates that the author ordering is alphabetical.

Working papers

2024

  1. working
    Lifted Residual Score Estimation
    Tejas Jayashankar*, J. Jon Ryu*Xiangxiang Xu, and Gregory W. Wornell
    2024

Preprints

2024

  1. arXiv
    A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation
    J. Jon RyuAbhin Shah, and Gregory W. Wornell
    2024

2022

  1. arXiv
    Minimax Optimal Algorithms with Fixed-k-Nearest Neighbors
    J. Jon Ryu, and Young-Han Kim
    2022
    Submitted.
  2. arXiv
    Learning with Succinct Common Representation with Wyner’s Common Information
    2022
    Submitted. A preliminary version of this manuscript was presented at the Bayesian Deep Learning Workshop at NeurIPS 2018, and an abridged version of the current manuscript was presented at the Bayesian Deep Learning workshop at NeurIPS 2021.

Journal articles

2024

  1. TIT
    On Confidence Sequences for Bounded Random Processes via Universal Gambling Strategies
    J. Jon Ryu, and Alankrita Bhatt
    IEEE Trans. Inf. Theory, 2024

2022

  1. TIT
    Nearest neighbor density functional estimation from inverse Laplace transform
    IEEE Trans. Inf. Theory, February 2022

Conference papers

2024

  1. ISIT
    Group Fairness with Uncertainty in Sensitive Attributes
    Abhin ShahMaohao ShenJ. Jon Ryu, Subhro Das, Prasanna Sattigeri, Yuheng Bu, and Gregory W. Wornell
    In Proc. IEEE Int. Symp. Inf. Theory (ISIT) , February 2024
  2. ICML
    Operator SVD with Neural Networks via Nested Low-Rank Approximation
    J. Jon RyuXiangxiang Xu, H. S. Melichan Erol, Yuheng BuLizhong Zheng, and Gregory W. Wornell
    In Proc. Int. Conf. Mach. Learn. (ICML) , July 2024
  3. ICML
    Gambling-Based Confidence Sequences for Bounded Random Vectors
    J. Jon Ryu, and Gregory W. Wornell
    In Proc. Int. Conf. Mach. Learn. (ICML) , July 2024
    Spotlight (top 3.5%)
  4. NeurIPS
    Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?
    Maohao Shen*J. Jon Ryu*, Soumya Ghosh, Yuheng Bu, Prasanna Sattigeri, Subhro Das, and Gregory W. Wornell
    In Adv. Neural Inf. Proc. Syst. (NeurIPS) , July 2024

2023

  1. AISTATS
    On Universal Portfolios with Continuous Side Information
    Alankrita Bhatt*J. Jon Ryu*, and Young-Han Kim
    In Proc. Int. Conf. Artif. Int. Statist. (AISTATS) , April 2023

2022

  1. AISTATS
    Parameter-Free Online Linear Optimization with Side Information via Universal Coin Betting
    J. Jon RyuAlankrita Bhatt, and Young-Han Kim
    In Proc. Int. Conf. Artif. Int. Statist. (AISTATS) , March 2022

2021

  1. ISIT
    On the Role of Eigendecomposition in Kernel Embedding
    J. Jon RyuJiun-Ting Huang, and Young-Han Kim
    In Proc. IEEE Int. Symp. Inf. Theory (ISIT) , March 2021

2020

  1. ICASSP
    Feedback Recurrent Autoencoder
    Yang Yang, Guillaume Sautière, J. Jon Ryu, and Taco S. Cohen
    In Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) , March 2020

2018

  1. ICIP
    Conditional distribution learning with neural networks and its application to universal image denoising
    Jongha Ryu, and Young-Han Kim
    In Proc. IEEE Int. Conf. Image Proc. (ICIP) , March 2018
  2. ITW
    Variations on a theme by Liu, Cuff, and Verdú: The power of posterior sampling
    Alankrita Bhatt†Jiun-Ting Huang†Young-Han Kim†J. Jon Ryu†, and Pinar Sen†
    In Proc. IEEE Inf. Theory Workshop (ITW) , March 2018
  3. Allerton
    Monte Carlo methods for randomized likelihood decoding
    Alankrita Bhatt†Jiun-Ting Huang†Young-Han Kim†J. Jon Ryu†, and Pinar Sen†
    In Proc. Ann. Allerton Conf. Comm. Control Comput. (Allerton) , March 2018

Miscellaneous

2022

  1. arXiv
    An Information-Theoretic Proof of Kac–Bernstein Theorem
    J. Jon Ryu, and Young-Han Kim
    March 2022

2017

  1. arXiv
    Energy-based sequence GANs for recommendation and their connection to imitation learning
    Jaeyoon Yoo, Heonseok Ha, Jihun Yi, Jongha Ryu , Chanju Kim, Jung-Woo Ha, Young-Han Kim, and Sungroh Yoon
    March 2017

Theses

2022

  1. PhD thesis
    From Information Theory to Machine Learning Algorithms: A Few Vignettes
    Jongha Jon Ryu
    University of California San Diego , September 2022