

CONDITIONAL DISTRIBUTION LEARNING WITH NEURAL NETWORKS AND ITS APPLICATION TO UNIVERSAL IMAGE DENOISING

Discrete denoising

- Discrete alphabets $\mathcal{X}, \mathcal{Z}, \hat{\mathcal{X}}$
- Known DMC $\Pi(z|x)$ with inverse channel $\Pi^{\dagger}(x|z)$

Hidden (clean) x ⁿ	<i>x</i> ₁	<i>x</i> ₂	•••	x _i	•••	x_{n-1}	<i>x</i> _n
				D	МС П	(z x)	
Observation (noisy) Z ⁿ	<i>Z</i> ₁	<i>Z</i> ₂	•••	Zi	••••	Z_{n-1}	Z_n
Denoising							
Reconstruction $\hat{x}^n(Z^n)$	\hat{x}_1	\hat{x}_2	•••	\hat{x}_i	•••	\hat{x}_{n-1}	\hat{x}_n

- Loss function $\Lambda \colon \mathcal{X} \times \hat{\mathcal{X}} \to [0, \infty)$
- Goal: Based on noisy observation Z^n , reconstruct a clean sequence $\hat{x}^n(Z^n)$ which minimizes the cumulative loss

$$\sum_{i=1}^{n} \Lambda(X_i, \hat{x}_i(Z^n))$$

Context-based methods

- Process each symbol based on its *context*
 - \blacktriangleright Context = *neighboring* symbols/pixels
 - ► a.k.a. sliding window algorithms

232	200	255	
230	150	198	
200	230	200	

- The underlying source can be parsed into IID sources with respect to the context model
- Common two-stage algorithm
 - ► (Step 1: Conditional distribution learning) For each context, learn the conditional distribution of the symbol given the context
 - ► (Step 2: Bayes action) Given a context and a symbol, take the Bayes optimal action with respect to the conditional distribution from (Step 1)
- (+) Clean divide-and-conquer
- \bullet (-) Sparse context problem: inherent tradeoff in choosing the context order k
 - \blacktriangleright Small k: data structure may not be captured
 - \blacktriangleright Large k: too few samples per context

Jongha "Jon" Ryu

{jongharyu,yhk}@ucsd.edu

Dept. of Electrical and Computer Engineering, University of California, San Diego

DUDE algorithm

- Discrete Universal DEnoiser (Weissman et al. 2005)
- \mathcal{C} : a set of contexts
- Hyperparameter: window size k
- Construct a denoiser $\hat{X} = \hat{x}(Z^n) \colon \mathcal{C} \times \mathcal{Z} \to \hat{\mathcal{X}}$ based on data Z^n

DUDE algorithm runs in two passes

 $Z^n \xrightarrow{\text{distribution}} \hat{p}_{\text{emp}}(z|\mathbf{c}) \xrightarrow{\mathbb{P}} \hat{p}(x|\mathbf{c},z) \xrightarrow{\mathbb{P}} \hat{x}(\mathbf{c},z)$

1. Find the *empirical distribution*

$$q_{\text{emp}}(z|\mathbf{c}) \triangleq \frac{|\{j : \mathbf{c}_j = \mathbf{c}, z_j = z\}|}{|\{j : \mathbf{c}_j = \mathbf{c}\}|}$$

by counting the number of occurrences of noisy symbols for each context **c**

2. Find the Bayes optimal denoiser under $q(x|\mathbf{c},z)$, by Bayes rule and channel inversion

- (+) Easy to implement, low complexity
- (+) Theoretical guarantee

► Universality: for any underlying stationary process, DUDE asymptotically attains the Bayes optimal performance, provided that k grows properly with n

- (-) Sparse context problem
- ▶ For grayscale images, $|\mathcal{X}| = |\mathcal{Z}| = 256$
- Even for k = 1, $|\mathcal{C}| = |\mathcal{Z}|^{4k(k+1)} = 256^8 = 2^{64}$

Example

- Source: Binary symmetric 1st order Markov sequence with flip probability 0.1
- Channel: BSC(p) with p = 0.1

Young-Han Kim

Proposed CUDE algorithm

• Context-aggregated Universal DEnoiser

• **Key idea**: Two-stage algorithm with conditional distribution aggregated among similar contexts by a neural network

CUDE algorithm also runs in *two passes*

 $Z^{n} \xrightarrow{\text{NEURAL NET}} \hat{p}_{\mathbf{w}}(z|\mathbf{c}) \xrightarrow{p_{\mathbf{w}}(z|\mathbf{c})} \xrightarrow{p_{\mathbf{w}}(x|\mathbf{c},z)} \xrightarrow{p_{\mathbf{w}}(x|\mathbf{c},z)} \xrightarrow{p_{\mathbf{w}}(z,z)} \hat{x}_{\mathbf{w}}(\mathbf{c},z)$

1. Train a neural network $\mathbf{c} \mapsto q_{\mathbf{w}}(z|\mathbf{c})$

$$\hat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}\in\mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \ln \frac{1}{q_{\mathbf{w}}(z_i|\mathbf{c}_i)}$$
$$= \operatorname*{arg\,min}_{\mathbf{w}\in\mathcal{W}} \sum_{\mathbf{c}} q_{\mathrm{emp}}(\mathbf{c}) D(q_{\mathrm{emp}}(z|\mathbf{c}) || q_{\mathbf{w}}(z|\mathbf{c}))$$

2. Find the Bayes optimal denoiser under $q_{\mathbf{w}}(x|\mathbf{c},z)$ by Bayes rule and channel inversion

- Learns $q_{\mathbf{w}}(z|\mathbf{c})$ that minimizes the relative entropy $D(q_{\rm emp}(z|\mathbf{c}) \| q_{\mathbf{w}}(z|\mathbf{c}))$ for all \mathbf{c} collectively
- Intuition: context aggregation via neural networks
- $\blacktriangleright \mathbf{c} \mapsto q_{\mathbf{w}}(z|\mathbf{c})$ is continuous
- ► A neural network has *finite* capacity

CUDE vs. Neural DUDE

Fig. Comparison of neural networks used in CUDE and Neural DUDE under the context model of order k = 4.

• Neural DUDE uses $\arg \max_{s \in S} q_{\mathbf{w}}(s|\mathbf{c})$ as the best single-symbol denoiser for each $\mathbf{c} \in \mathcal{C}$

• (-) Huge output layer of size $|\mathcal{Z}|^{|\mathcal{X}|}$

• Neural DUDE cannot denoise grayscale images

grayscale Barbara image corrupted by S&P noise with $\delta = 50\%$ contexts were used. The red and blue patches specified in each image are magnified and shown below.

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

. Simulation with quaternary images

Algorithms	Barbara	Boat	Cameraman	Lena
DUDE	20.5(3)	22.0(2)	24.4(2)	22.4(2)
Neural DUDE	20.7(26)	21.9(5)	23.9(3)	21.9(27)
CUDE	21.5 (36)	22.6 (11)	25.2 (10)	23.1 (6)
DUDE	14.7(3)	16.3(2)	16.7(2)	15.7(3)
Neural DUDE	16.3(10)	17.8(13)	18.7~(16)	17.6(17)
CUDE	16.5 (18)	18.2 (16)	19.1 (15)	17.9 (15)

Comparison of denoising performance in PSNR(dB) for quaternary scaled images corrupted by QSC noise with $\delta = 10\%, 30\%$.

Fig.: PSNR plot for the quaternary boat image corrupted by S&P noise ($\delta = 10\%, 30\%$) with different context orders.

2. Grayscale image denoising

(b) Noisy image

(d) IMSM prefiltered image 25.6dB

(c) CUDE (k=1)

(e) Iterated CUDE (k=15)29.9dB

Future directions

- Continuous alphabets: conditional pdf learning • Theoretical guarantees

 - ▶ When is CUDE better than DUDE?
 - ► How to quantify the effect of context aggregation?
- Extension to other tasks
 - \blacktriangleright (Offline) Compression, classification, ...
- ► (Online) Prediction, filtering, portfolio selection, ...