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Discrete denoising
e Discrete alphabets X', Z, X

DUDE algorithm

e Discrete Universal DEnoiser (Weissman et al.
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Proposed CUDE algorithm

e Context-aggregated Universal DEnoiser

Experiments

1. Simulation with quaternary images
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Context-based methods

e Process each symbol based on its context

» Context = neighboring symbols/pixels

» a.k.a. sliding window algorithms
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e The underlying source can be parsed into 11D
sources with respect to the context model

symbols for each context c

2. Find the under
q(x|c, z), by Bayes rule and channel inversion

¢ (+) Easy to implement, low complexity

e (+) Theoretical guarantee

» Universality: for any underlying stationary process,
DUDE asymptotically attains the Bayes optimal perfor-
mance, provided that k grows properly with n

e (—) Sparse context problem
» For grayscale images, |X| = |Z| = 256
» Even for k = 1, |C| = |Z|*F(k+1) = 2568 = 264

Example

e Source: Binary symmetric 1st order Markov se-
quence with flip probability 0.1

e Channel: BSC(p) with p =0.1

qw(x|c, z) by Bayes rule and channel inversion

e Learns ¢ (z|c) that minimizes the relative entropy
D(Gemp(2]c)||gw(2|c)) for all ¢ collectively

e Intuition:
works

context aggregation via neural net-

» c — qw(z|c) is continuous

» A neural network has finite capacity

CUDE vs. Neural DUDE

e Neural DUDE (Moon et al. 2016) trains a neural
network ¢w : C — Al®!l where S = {s: Z — X}
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2. Grayscale 1mage denmsmg

(a) Original image

Fig. Denoising of the
grayscale Barbara image
corrupted by S&P noise
with § = 50% contexts
were used. The red and
blue patches specified in
each 1image are magnified
and shown below.
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(d) IMSM prefiltered image

(e) Iterated CUDE (k=15)

-’ softmax
¢ Common two-stage algorithm 15;)&;““ i e e 25.6dB 29.9dB
» (Step 1: Conditional distribution learning) For __0.10-  DUDE = ~ -~ . .
each context, learn the conditional distribution of the ﬁ \ Conditional distribution Score vector of functions Fllture dlreCtlonS
symbol given the context 0 .09 - CUDE H(z|C) € AlZ! gw(s|c) € AlZI™!
» (Step 2: Bayes action) Given a context and a sym- @ (a) CUDE (b) Neural DUDE e Continuous alphabets: conditional pdf learmng
bol, take the Bayes optimal action with respect to the G 0.08 - e Theoretical guarantees
conditional distribution from (Step 1) 5 Fig. Comparison of neural networks used in CUDE and hen is CUDE b han DUDE?
° (_|_) (lean Civide—and—conquer “ 0.07 - Neural DUDE under the context model of order k£ = 4. » When is CU etter than DU :
' Q » How to quantity the effect of context aggregation?
e (—) Sparse context problem: inherent tradeoff in £ o6 - Jr—«\/./ e Neural DUDE uses arg max,c s qw(s|c) as the best Extension to other task
choosing the context order £ =0 single-symbol denoiser for each ¢ € C ¢ DRLENSION 1O OLUCL Lasks

» Small k: data structure may not be captured

» Large k: too few samples per context

2 4 6 8 10 12 14
context order k

e (—) Huge output layer of size |Z\|X|

e Neural DUDE cannot denoise grayscale images

» (Offline) Compression, classification,

» (Online) Prediction, filtering, portfolio selection,



