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Problem: Operator Spectral Decomposition

Given a target positive semidefinite operator
find the top- K eigenvalues/functions

g ? (Aiy |¥3)) h
T = ZA i) (Wil — Ty = A, M
_ 1=1,... . K y

Applications (operator)

- Quantum chemistry (Hamiltonian)
- Representation learning (conditional expectation operator)
- Graph learning (graph Laplacians)

Parametric Spectral Decomposition

Optimization
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Classical approaches use very Iimitﬁd form of trial functions

- Finite element methods for(x) = ka,ié(x —X;)
1=1

- Galerkin type methods  fo,x(x) = aj (1.0 (%)

Using neural networks can be much more scalable with enough
inductive bias (proven to be powerful in quantum chemistry)

Our Approach:
Nested Optimization
with Unconstrained Variational Principle
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* Compact operators: NestedLoRA (Ryu et al., ICML 2024)
* PSD operators: NestedOMM (this paper!)

What’s Orbital Minimization Method (OMM)?
d
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max tr(VTAV) standard Rayleigh quotient maximization
VeRIxk : [VTV=I]

max tr((VTV)_ll\/TAV) unconstrained version
VERd X k

min  Lomm(V), where| Comm(V) 2 —tr((2l, — VTV)VTAV)
VeRkaz

All characterize the top-k eigensubspace as a global optima
(OMM was proposed by Mauri et al., (1993) in density functional theory)

Q1. Where does it come from? Q2. How can we show the

(Original: ad-hoc Neumann series expansion) consistency?

We give a simple yet intuitive derivation: We provide an elementary

Lomm(v) _ tr((ld - VVT)QA) B tr(A) linear-algebraic proof
N , Key observation: OMM only
£éﬁ?m (V) = tr((lg — VVT)PA) —tr(A) depends on the PSD matrix VV¥

NestedOMM: OMM with Nesting

We can apply the nesting technique (Ryu et al., ICML 2024) to learn
ordered eigenvectors — NestedOMM

- Joint nesting: update Vi, by 35 . w; Lomm (Vi.i)
- Sequential nesting: update v; using gradient of L,3,m(V;.;), for each i

Special Case: Streaming PCA
T B o) (®Y
PCA: A= E,x[xx"] / streaming PCA: A, = =)y X, (Xb )

* OMM with sequential nesting (4 gradient descent)
vi' ™ i o, {(I — VEHVEDT) A + A (1= V) <v§f2>T)v§“}
» cf. Generalized Hebbian algorithm (a.k.a. Sanger’s algorithm)
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Comparison with Low-Rank Approximation (LoRA)

Lomm(V) = tr((la = VVT)?A) — tr(A) Liora(V) = [|A = VT |[g — [|A[[f
V (V)T = Wi, WT, VH(VA)T = WA W],

Only applicable for EVD of PSD matrices Applicable for SVD of any matrices

Can outperform LoRA when A is sparse

From Matrix to Operator

T: Lo(X) — Li(X) L2(X) A{ X —-R /f }
oo f2) 2 | a0 i (0)p(a)
REPLACE
overlap matrix VTV M, [f] = /f(x)f(x)Tp(dX)
w/
projected matrix VTAV M, [f, Tf] = /f(x)(Tf)(x)Tp(dX)
Experiments

(1) Representation learning for reinforcement learning
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Compared to ALLO, OMM does not need any
hyperparameter tuning and robust to small spectral gap!

(2) Solving time-independent Schrodinger equation
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(1) Bounded spectrum ;5. |
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2d-confined hydrogen atom ~. ‘

(2) Unbounded spectrum ;An
can be handled by ogi
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(2-1) 2d harmonic oscillator
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(3) Linear-algebraic self-supervised representation learning

With projector DirectCLR (top-64 dim.)

Method

Top-1 Top-S Top-1 Top-5
OMM (p =1) 60.02 87.13 59.83 86.65
OMM;.: (p=1) 61.30 85.22 59.92 85.13
OMMseq (p = 1) 5091 87.02 52.96 81.22
OMM (p = 2) 63.92 89.08 61.27 87.07
OMM (p=1)+OMM (p=2) 64.77 89.18 63.99 88.88
SimCLR [3 66.50  89.28 N/A N/A

Higher-order OMM helps learn better representation
Though not SOTA, motivates further investigation!



