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Motivation & Problem Setting

Various scientific systems (e.g., molecular dynamics, climate data) can
be viewed as stochastic dynamical systems.
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can we analyze the dynamics?
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Goal: extract hidden slow & dominant modes,
estimate characteristic timescales (e.g., folding rates),

Challenge 1. Nonlinearity (X; = X;,; is nonlinear)

Solution. “"Koopman analysis": analyze the conditional expectation
operator (Kg)(x) & Ep(X’|X) lg(x')] (a.k.a. Koopman operator)

Note: the Koopman operator is now LINEAR!
— we can borrow spectral tools from operator theory

Challenge 2. Dimensionality (x; lives in high-dim. space)

Early methods (e.g., DMD, EDMD) rely on pre-defined, fixed
measurement functions to capture the operator (cf. PCA, kernel PCA)

(+) closed-form solution / easy analysis; (=) NOT scalable!!!

Solution. Use neural networks to capture the dynamics with flexibility!

But... how should we train them?
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Directly minimize the low-rank approximation (LoRA) error:
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* Challenge: Existing deep Koopman methods
suffer from numerical instability and biased
gradients.

* Solution: We propose to use LoORA-based

[’lora (f g) _2 tI'(T[f, g]) _|_ tr(Mpo [f] Mp1 [g]) opl.:imization, WhiC.h allows unbiz?sed. gradient

estimates and requires no regularization

* No need for regularization for orthogonality or matrix inverse.  Impact: Scalable and stable training of

* Allows natural unbiased gradient estimate. dominant modes in high-dimensional systems
(e.g., Chignolin molecular simulations),

* Can also learn ordered singular functions with the nesting technique. . . .
accurately recovering eigenfunctions.

(experiments show empirical advantage over non-nested version)

Existing Deep-Learning Based Methods

VAMPnet and DPNet were proposed to train neural nets to

capture top singular subspaces of K from data.

VAMPnet: Evamp-'r(fa g) = — ‘(Mpo f)—%Tﬂ g‘(Mpl g
DPNet:  L{V(f,g) 2 —||(M,, [f]) " 3TIf, g](M,, [
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These second moment matrices are core quantities.
A / /
Mp. (8] = Ep, () [8(x)g(x)T] Can be estimated by minibatch samples.

T[f7 g] = IIE‘:"po(x)p(x’ | x) [f(x)g(x/)T]

These objectives suffer from numerical instability and biased

gradient (bad for large scale optimization).

Experimental Results

Superior in prediction & eigenfunction recovery Robust & scalable, achieving better orthogonality

Exp 1. Ordered MNIST E}V-EYEL-EI-EE Exp 3. Chignolin molecular dynamics

(10 amino-acids, 77 non-H atoms)
Prediction Accuracy: Evaluated by an oracle classifier

. . rator fittin ores on the test dataset
RMSE: L2 distance to class centroids Eﬂ Operator fitting sc
| | k: # modes, H: feature dimension, B: Batch size
) Multistep Accuracy w/ EDMD(g) Multistep RMSE w/ EDMD(g) —— VAMPnet-1 |
o DPNetrelaxed (k, H, B) LoRA..;, LoRA;: LoRA | DPNetr DPNet-rC
o Lo, (64, 128,384) | 31.61 29.89 2951 -9.76 5.20
e~ LoRA (64, 64, 96) 25.83 23.82 2551 4.75 5.93
(64, 64, 384) 26.66 2725  24.11 -1.97 4.72
1000 itistep Accuracy {LoRAy) Multistep RMSE (LORAjnc (32,128,384) | 17.68 1566  16.26 1.75 3.08
3 0.975 i SR . e EDMD( (32, 64, 96) 17.19 15.64 17.36 4.03 6.44
3 0.950 ww A‘W Z» | e DM (32, 64, 384) 16.69 17.02 15.79 4.36 4.91
5 2 2‘«,. v CCA+LoRA .
S 200 Tgacous yreeee®™” (16, 64, 384) 9.73 879 880 | 3.5 4.19
00 T 0 05 6 & 1o 15  -15 -0 5 o & 10 15 (16, 64, 96) 10.22 8.80 8.52 2.74 4.40
time steps time steps ‘
LoRA variants consistently outperforms existing baselines. LoRA variants exhibit consistent stability,

while baselines fail to converge or result in negative scores.

Exp 2. 1D Langevin dynamics

Orthonormality of basis functions on train/test set
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Orthonormality of the Basis Functions on the Test Set
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Dominant eigenfunctions

LoRA variants implicitly learns orthonormal basis
© Wh||e existing methods fail, LoRA,., accurately recovers PHCILY
capture transitions between Seq

(diagonal Gram matrices) without any regularization.

metastable states. ordered eigenfunctions without any regularizations.




