

# Efficient Parametric SVD of Koopman Operator for Stochastic Dynamical Systems

Minchan Jeong\*, Jongha (Jon) Ryu\*, Se-Young Yun, Gregory W. Wornell



virtual poster

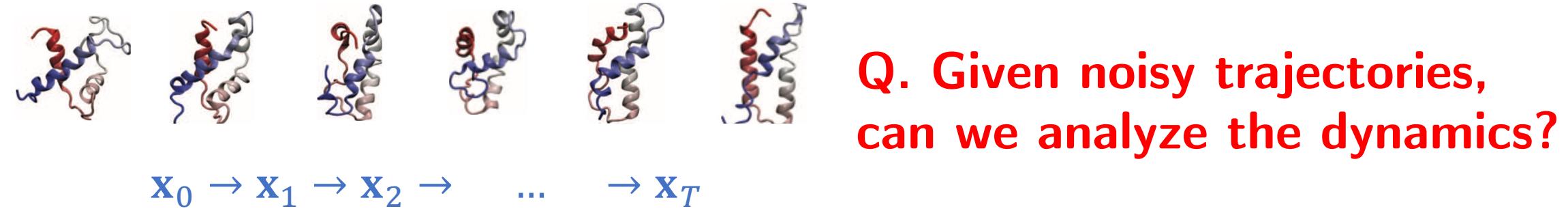


arXiv



## Motivation & Problem Setting

Various scientific systems (e.g., molecular dynamics, climate data) can be viewed as stochastic dynamical systems.



Goal: extract hidden **slow & dominant modes**, estimate **characteristic timescales** (e.g., folding rates), ...

**Challenge 1. Nonlinearity** ( $x_t \rightarrow x_{t+1}$  is nonlinear)

**Solution.** "Koopman analysis": analyze the **conditional expectation operator**  $(\mathcal{K}g)(x) \stackrel{\text{def}}{=} \mathbb{E}_{p(x'|x)}[g(x')]$  (a.k.a. **Koopman operator**)

**Note:** the Koopman operator is now **LINEAR!**

→ we can borrow spectral tools from operator theory

**Challenge 2. Dimensionality** ( $x_t$  lives in high-dim. space)

Early methods (e.g., DMD, EDMD) rely on pre-defined, fixed measurement functions to capture the operator (cf. PCA, kernel PCA)

(+) closed-form solution / easy analysis; (-) NOT scalable!!!

**Solution.** Use neural networks to capture the dynamics with **flexibility**!

But... how should we train them?

## Existing Deep-Learning Based Methods

**VAMPnet** and **DPNet** were proposed to train neural nets to capture top singular subspaces of  $\mathcal{K}$  from data.

**VAMPnet:**  $\mathcal{L}_{\text{vamp-}r}(\mathbf{f}, \mathbf{g}) \triangleq -\left\|(\mathbf{M}_{\rho_0}[\mathbf{f}])^{-\frac{1}{2}} \mathbf{T}[\mathbf{f}, \mathbf{g}] (\mathbf{M}_{\rho_1}[\mathbf{g}])^{-\frac{1}{2}}\right\|^r$

**DPNet:**  $\mathcal{L}_{\text{dp}}^{(\gamma)}(\mathbf{f}, \mathbf{g}) \triangleq -\left\|(\mathbf{M}_{\rho_0}[\mathbf{f}])^{-\frac{1}{2}} \mathbf{T}[\mathbf{f}, \mathbf{g}] (\mathbf{M}_{\rho_1}[\mathbf{g}])^{-\frac{1}{2}}\right\|^2$

$$\mathbf{M}_{\rho_0}[\mathbf{f}] \triangleq \mathbb{E}_{\rho_0(x)}[\mathbf{f}(x)\mathbf{f}(x)^\top]$$

$$\mathbf{M}_{\rho_1}[\mathbf{g}] \triangleq \mathbb{E}_{\rho_1(x')}[\mathbf{g}(x')\mathbf{g}(x')^\top]$$

$$\mathbf{T}[\mathbf{f}, \mathbf{g}] \triangleq \mathbb{E}_{\rho_0(x)p(x'|x)}[\mathbf{f}(x)\mathbf{g}(x')^\top]$$

These second moment matrices are core quantities. Can be estimated by minibatch samples.

These objectives suffer from **numerical instability** and **biased gradient** (bad for large scale optimization).

## Our Proposal

Directly minimize the **low-rank approximation (LoRA) error**:

$$\|\mathcal{K} - \sum_{i=1}^k \mathbf{f}_i \otimes \mathbf{g}_i\|_{\text{HS}}^2$$

$$\mathcal{L}_{\text{lora}}(\mathbf{f}, \mathbf{g}) \triangleq -2 \text{tr}(\mathbf{T}[\mathbf{f}, \mathbf{g}]) + \text{tr}(\mathbf{M}_{\rho_0}[\mathbf{f}] \mathbf{M}_{\rho_1}[\mathbf{g}])$$

- **No need for regularization** for orthogonality or matrix inverse.
- Allows natural **unbiased gradient estimate**.
- Can also **learn ordered singular functions** with the **nesting technique**. (experiments show empirical advantage over non-nested version)

## Summary

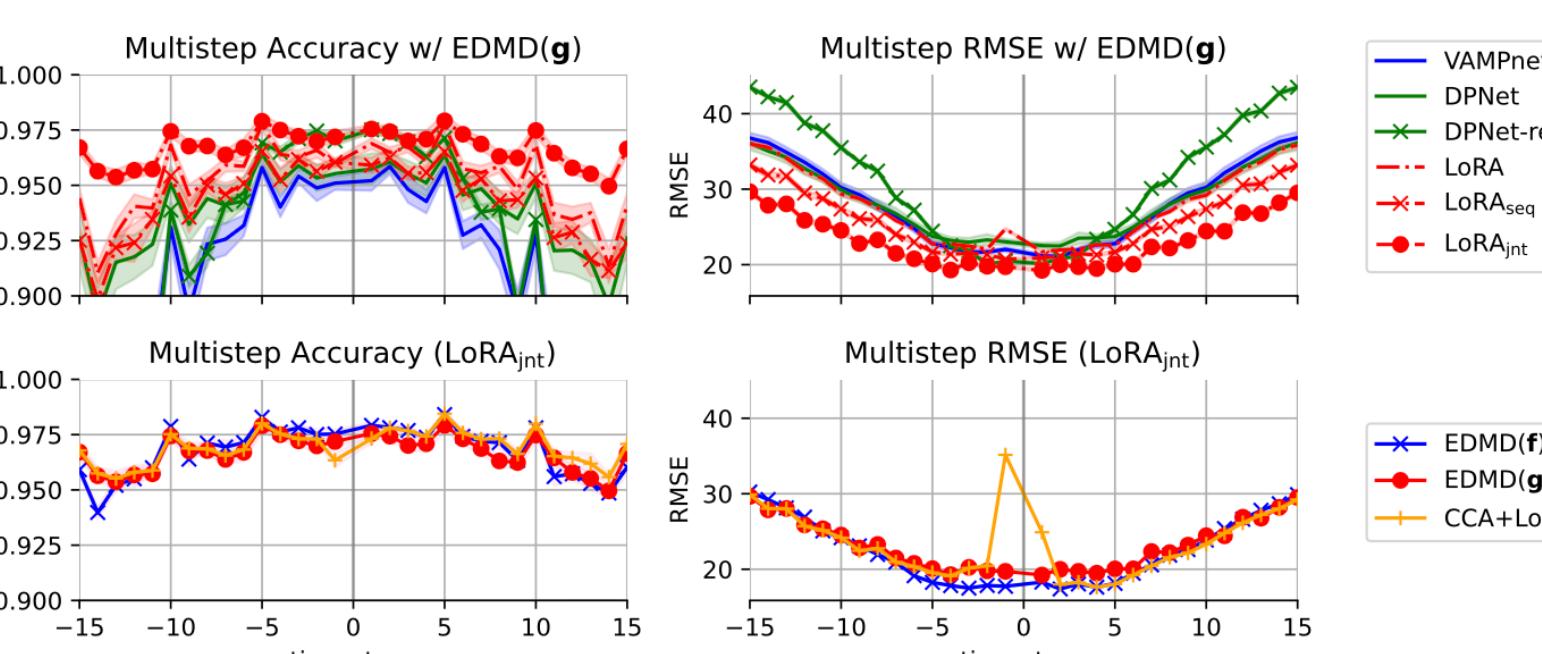
- **Challenge:** Existing deep Koopman methods suffer from numerical instability and biased gradients.
- **Solution:** We propose to use **LoRA-based optimization**, which allows unbiased gradient estimates and requires no regularization
- **Impact:** Scalable and stable training of dominant modes in high-dimensional systems (e.g., Chignolin molecular simulations), accurately recovering eigenfunctions.

## Experimental Results

### Superior in prediction & eigenfunction recovery

#### Exp 1. Ordered MNIST 0→1→2→3→4→0

**Prediction Accuracy:** Evaluated by an oracle classifier  
**RMSE:** L2 distance to class centroids

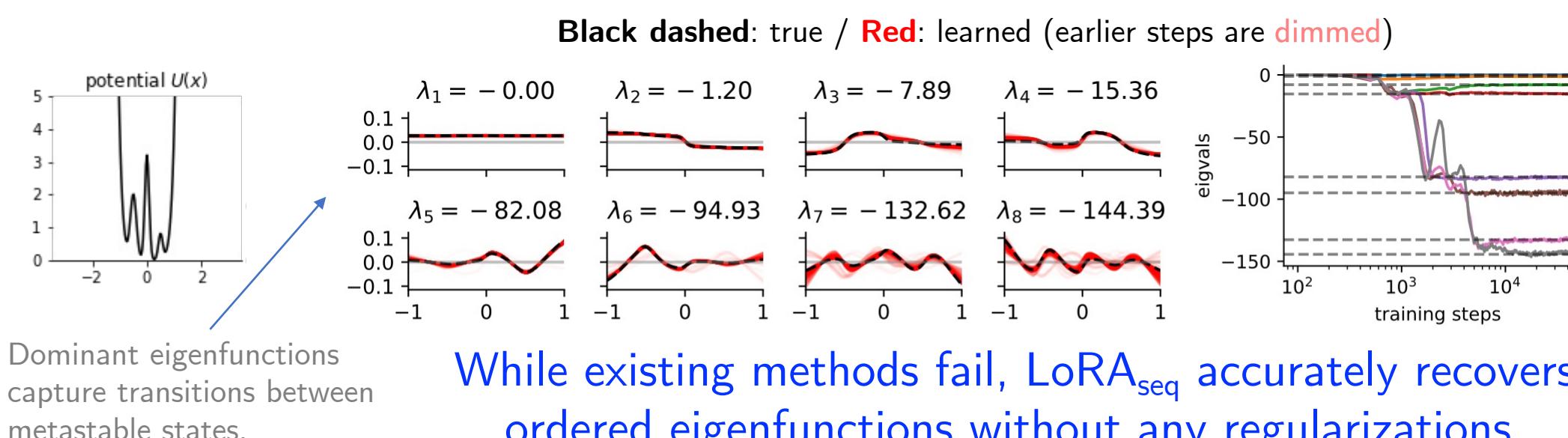


LoRA variants consistently outperforms existing baselines.

#### Exp 2. 1D Langevin dynamics

A continuous-time dynamics described by a stochastic diff eq.  $dX_t = -\frac{U'(x_t)}{\gamma} dt + \sqrt{\frac{2}{\beta\gamma}} dW_t$

Koopman operator = Infinitesimal generator (differential operator)  $(\mathcal{L}f)(x) = -\frac{U'(x_t)}{\gamma} f'(x) + \frac{1}{\beta\gamma} f''(x)$



While existing methods fail, LoRA<sub>seq</sub> accurately recovers ordered eigenfunctions without any regularizations.

### Robust & scalable, achieving better orthogonality

#### Exp 3. Chignolin molecular dynamics

(10 amino-acids, 77 non-H atoms)

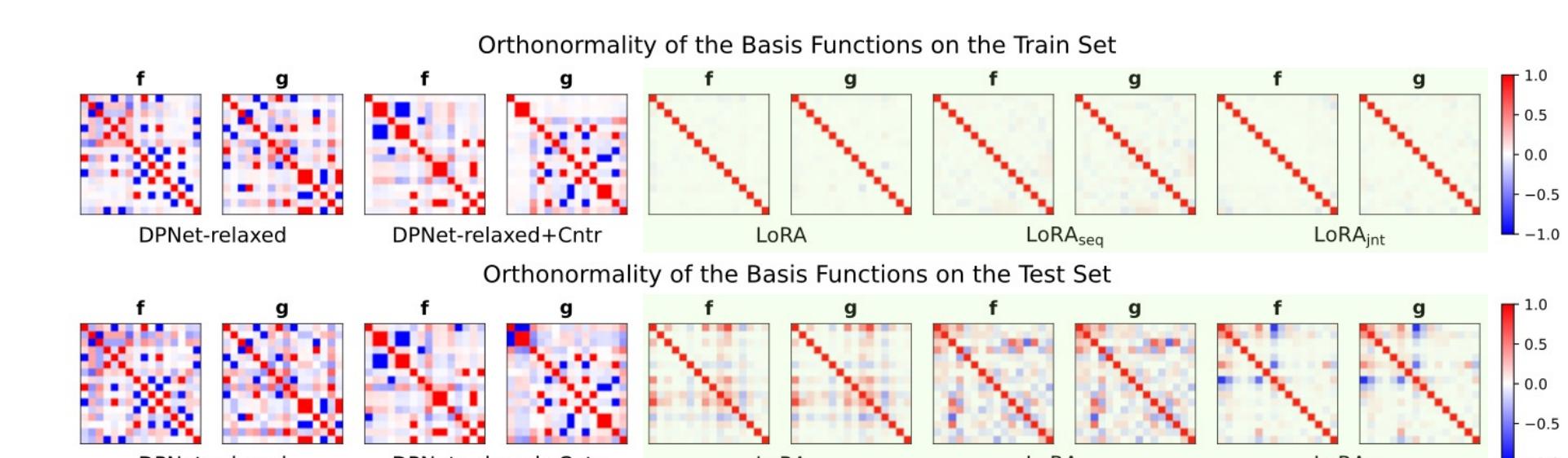
#### Operator fitting scores on the test dataset

$k$ : # modes,  $H$ : feature dimension,  $B$ : Batch size

| $(k, H, B)$    | LoRA <sub>seq</sub> | LoRA <sub>int</sub> | LoRA  | DPNet-r | DPNet-rC |
|----------------|---------------------|---------------------|-------|---------|----------|
| (64, 128, 384) | 31.61               | 29.89               | 29.51 | -9.76   | 5.20     |
| (64, 64, 96)   | 25.83               | 23.82               | 25.51 | 4.75    | 5.93     |
| (64, 64, 384)  | 26.66               | 27.25               | 24.11 | -1.97   | 4.72     |
| (32, 128, 384) | 17.68               | 15.66               | 16.26 | 1.75    | 3.08     |
| (32, 64, 96)   | 17.19               | 15.64               | 17.36 | 4.03    | 6.44     |
| (32, 64, 384)  | 16.69               | 17.02               | 15.79 | 4.36    | 4.91     |
| (16, 64, 384)  | 9.73                | 8.79                | 8.80  | 3.05    | 4.19     |
| (16, 64, 96)   | 10.22               | 8.80                | 8.52  | 2.74    | 4.40     |

LoRA variants exhibit consistent stability, while baselines fail to converge or result in negative scores.

#### Orthonormality of basis functions on train/test set



LoRA variants implicitly learns orthonormal basis (diagonal Gram matrices) without any regularization.