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Directly minimize the low-rank approximation (LoRA) error:

• No need for regularization for orthogonality or matrix inverse.
• Allows natural unbiased gradient estimate.
• Can also learn ordered singular functions with the nesting technique. 

(experiments show empirical advantage over non-nested version)

Superior in prediction & eigenfunction recovery

Exp 2. 1D Langevin dynamics

Exp 1. Ordered MNIST

Robust & scalable, achieving better orthogonality

• Challenge: Existing deep Koopman methods 
suffer from numerical instability and biased 
gradients.

• Solution: We propose to use LoRA-based 
optimization, which allows unbiased gradient 
estimates and requires no regularization

• Impact: Scalable and stable training of 
dominant modes in high-dimensional systems 
(e.g., Chignolin molecular simulations), 
accurately recovering eigenfunctions.

Our Proposal Summary

LoRA variants exhibit consistent stability, 
while baselines fail to converge or result in negative scores.

Operator fitting scores on the test dataset 

Orthonormality of basis functions on train/test set 

LoRA variants consistently outperforms existing baselines.

Exp 3. Chignolin molecular dynamics
(10 amino-acids, 77 non-H atoms)
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Experimental Results

RMSE: L2 distance to class centroids
Prediction Accuracy: Evaluated by an oracle classifier

Black dashed: true / Red: learned (earlier steps are )

While existing methods fail, LoRAseq accurately recovers 
ordered eigenfunctions without any regularizations. 

k: # modes, H: feature dimension, B: Batch size

A continuous-time dynamics described by a stochastic diff eq.

Koopman operator = Infinitesimal generator (differential operator)

LoRA variants implicitly learns orthonormal basis 
(diagonal Gram matrices) without any regularization.

Motivation & Problem Setting
Various scientific systems (e.g., molecular dynamics, climate data) can 
be viewed as stochastic dynamical systems.

Goal: extract hidden slow & dominant modes,
estimate characteristic timescales (e.g., folding rates), …

Challenge 1. Nonlinearity (𝐱! → 𝐱!"# is nonlinear)
Solution. “Koopman analysis”: analyze the conditional expectation 
operator 𝒦𝑔 𝐱 ≝ 𝔼$ 𝐱% 𝐱 𝑔 𝐱% (a.k.a. Koopman operator) 

Note: the Koopman operator is now LINEAR! 
→ we can borrow spectral tools from operator theory

Challenge 2. Dimensionality (𝐱𝐭 lives in high-dim. space)

Early methods (e.g., DMD, EDMD) rely on pre-defined, fixed 
measurement functions to capture the operator (cf. PCA, kernel PCA)

(+) closed-form solution / easy analysis; (−) NOT scalable!!!

Solution. Use neural networks to capture the dynamics with flexibility!

But… how should we train them?

𝐱! → 𝐱" → 𝐱# → … → 𝐱$

Q. Given noisy trajectories, 
can we analyze the dynamics?

Existing Deep-Learning Based Methods
VAMPnet and DPNet were proposed to train neural nets to 
capture top singular subspaces of 𝒦 from data.

These objectives suffer from numerical instability and biased 
gradient (bad for large scale optimization).

VAMPnet:
DPNet:

These second moment matrices are core quantities. 
Can be estimated by minibatch samples.
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Dominant eigenfunctions 
capture transitions between 
metastable states.


