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On Confidence Sequences for Bounded Random
Processes via Universal Gambling Strategies

J. Jon Ryu

Abstract— This paper considers the problem of constructing a
confidence sequence, which is a sequence of confidence intervals
that hold uniformly over time, for estimating the mean of
bounded real-valued random processes. This paper revisits the
gambling-based approach established in the recent literature
from a natural two-horse race perspective, and demonstrates
new properties of the resulting algorithm induced by Cover
(1991)’s universal portfolio. The main result of this paper is a
new algorithm based on a mixture of lower bounds, which closely
approximates the performance of Cover’s universal portfolio with
constant per-round time complexity. A higher-order generaliza-
tion of a lower bound on a logarithmic function in (Fan et al.,
2015), which is developed as a key technique for the proposed
algorithm, may be of independent interest.

Index Terms— Confidence sequences, time-uniform confidence
intervals, gambling, universal portfolios.

I. INTRODUCTION
UPPOSE that (Y;)$2, is a [0, 1]-valued stochastic process
Ssuch that E[Y;|[Y'"1!] = pu for any t > 1, for some
unknown mean parameter y € (0,1). Here we use a shorthand
notation Y* £ (Y3,...,Y;). A confidence sequence for the
mean parameter y at level 1 — § is defined as a sequence of
sets (C)§2, such that C; C (0,1) is a function of Y1 and

P(ueC,Vt>1)>1-0.

A confidence sequence under this setting can be applied
to solving some fundamental problems in statistics, such as
sequentially estimating the mean of a bounded distribution
with i.i.d. samples [19], [32], or constructing a time-uniform
confidence interval for the mean of a fixed set of numbers
by random sampling without replacement [31]. This notion is
better suited in real applications than the classical confidence
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sets (or intervals) which only applies to a single time instance.
For example, suppose that a practitioner wishes to sequentially
estimate the mean of such a stochastic process. The user
wishes to construct a confidence interval, so that she can
choose when to stop sample to achieve a desired precision
and confidence level a priori. A confidence sequence allows
the user to determine adaptively in the sequential inference
setting thanks to the time uniformity; see [8] and [22].

The idea of time-uniform confidence sequences dates back
to Hoeffding [11], Darling and Robbins [5], and Lai [16].
Rather ignored for past decades, the idea has been revived
recently in the statistics community by a series of papers [12],
[22], [32] and in the computer science community [13], [19],
to name a few, even beyond the boundedness assumptions on
the stochastic processes we consider in this paper.

As noted above, this paper studies how to construct a con-
fidence sequence for the mean of bounded random processes
(with known support), especially via the “gambling” approach
established by a recent line of research. The most closely
related work is [19], [32]. Waudby-Smith and Ramdas [32]
proposed a gambling framework to construct confidence
sequences of bounded real-valued sequences. Several bet-
ting strategies were proposed, and their analytical behavior
of resulting confidence sequences were established. Orabona
and Jun [19] proposed to apply the universal portfolio (UP)
method of Cover [2] to construct a confidence sequence, and
obtained an analytical expression that bounds the UP-induced
confidence sequence based on the regret upper bound (which
corresponds to a wealth lower bound) of UP in terms of the
logarithmic wealth. They demonstrated an excellent empirical
performance of the proposed algorithms especially in a small-
sample regime. The proposed algorithms dubbed as PRECiSE,
however, is based on a rather intricate regret analysis and
does not naturally result in confidence intervals. In their work,
Orabona and Jun [19] also established a more relaxed lower
bound that directly generates confidence intervals without
introducing excessive slackness.

The main goal of this paper is twofold. First,
we provide a new perspective of the two-horse race
to the existing gambling-based approach which was
proven effective by Orabona and Jun [31] Waudby-Smith—
Ramdas2020b,0Orabona—Jun2021, which admits a more
natural interpretation in gambling and leads to a conceptual
simplification. Building upon the framework, we propose
a new method to approximate the performance of the UP
closely and fast in a more direct manner than Orabona and
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Junb [19], without invoking the regret analysis of UP. Our
contributions can be summarized as follows.

1) For {0,1}-valued sequences, we show that Cover’s UP
can be simplified to a universal two-horse race scheme,
which can be implemented with constant complexity
per round to construct time-uniform confidence intervals.
This observation is simple, but has not been realized in
the literature.

2) For [0, 1]-valued sequences, we discuss how to exactly
compute the wealth of any mixture of wealth processes
of constant bettors (such as Cover’s UP) with O(t) com-
plexity at round ¢ and show that it leads to time-uniform
confidence intervals. To circumvent the cumbersome O(?)
per-round complexity of the UP, we propose a new
UP-like method based on a new lower bound of the
wealth of Cover’s UP with constant complexity per
round. Our algorithm is based on Lemma 2, a higher-
order generalization of the proof technique of Fan et
al. [6, Lemma 4.1] developed for proving exponential
inequalities for martingales, which may be of independent
interest. Experiments validate that the proposed algorithm
gives tight confidence sequences.

The rest of the paper is organized as follows. Section II is
devoted to mathematical preliminaries. We start with a special
case of {0, 1}-valued processes in Section III and show that
there is a simple two-horse-race-based algorithm that emulates
the performance of Cover’s UP. In Section IV, we then study
the general case of [0, 1]-valued processes and propose a new
mixture-of-lower-bound approach. Related work are briefly
discussed in Section V and experimental results are presented
in Section VI. We conclude the paper in Section VII with
some remarks. All the deferred proofs and technical lemmas
can be found in Appendix.

II. PRELIMINARIES

At its core, the common technique upon which most, if not
all, methods for constructing confidence sequences rely on
is the following celebrated inequality by Ville [29] from the
martingale theory.

Theorem 1 (Ville’s Inequality): For a nonnegative super-
martingale sequence (W;)2, with Wy > 0, for any 6 > 0,
we have W, 1

P{sup— > —} < 4.

This statement is a sequential, uniform counterpart for
nonnegative supermartingales to Markov’s inequality for non-
negative random variables. Since this inequality controls the
probability that the sequence (W), overshoots a certain
threshold uniformly over time, the key idea is to construct a
good martingale sequence ()22, out of the given sequence
(Y;)f2, such that the wealth sequence grows as rapidly as
possible for any m # pu, so that the sequence of events
controlled by this inequality can be translated to a tighter
confidence sequence for a target parameter p; the intuition
will be visually demonstrated in Fig. 1 in Section VI-A.

As explored in [10], [13], [19], and [32], a natural way to
construct a supermartingale is via a gambling, and we thus
start by introducing the gambling formalism of this approach.
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A. Supermartingales From Gambling

A natural way to construct a (super)martingale sequence
is to consider the wealth process from a (sub)fair gambling.
Let K > 2 and let M C RX be a set of odds vectors.
We consider an abstract setting of gambling defined by the
following multiplicative game. Let Wealthg > 0 be the initial
wealth of a gambler. For each time ¢t > 1, a gambler chooses a
bet by = by(x'~!) € Ax_; as a function of the previous odds
vectors x'~!; such a betting strategy is said to be causal (or
nonanticiapting). Here, Ag_; £ {pe }RI;O: p1+...+pg =
1} denotes the (K — 1)-dimensional probability simplex. At
the end of each round, the odds vector x; is revealed, and the
gambler’s wealth gets multiplied by (b;,x;). Therefore, after
round ¢, the gambler’s wealth can be written as

t
Wealth, (x") = Wealthy | ] (b;, x;).
i=1

We call the odds vector sequence (x¢)i2, subfair,
if E[x;|x'~!] < 1 for every t, where the inequality holds
coordinatewise and 1 = (1,...,1) denotes the all-one vector.
Under this condition, the resulting wealth process from this
game is always a supermartingale as one may intuitively
expect.

Proposition 1: In any gambling with the cumulative wealth
of the form Wealth, = Wealthy [T\_, (bi, x;), if (x;)52, is
(sub)fair, then any wealth process (Wealth;)?2, attained by a
causal betting strategy is a (super)martingale.

Proof: For every t, we have

E[Wealth,|x’~!] = Wealth;_; (b, E[x;|x"™'])
< Wealth;_; (b, 1) = Wealth;_;.

O
We remark that this abstract formulation captures several
standard settings of gambling as special instances; see Table 1.
For example, if M = {2e;,2ey}, it corresponds to the
standard (fair) coin toss [4] (or coin betting [20]) game. If
M = {oe1,...,0xex} for some o1,...,0x > 0, then the
game becomes a horse race with odds o1, . . ., ox [4, Chap. 6].
The most general case is when M = RI>(0’ where the game is
typically known as a portfolio selection in a stock market [2].
The continuous coin toss problem that corresponds to M =
{[2¢,2(1 — ¢)]: ¢ € [0,1]} was considered by Orabona and
Pal [20] to translate the idea of universal betting for coin toss
to the domain of online linear optimization. In what follows,
betting strategy and portfolio are used interchangeably, where
the latter is used typically when the outcomes are continuous
like the stock market.

B. Two-Horse Race and Its Continuous Extension

In this paper, we consider the two-horse race with odds
01,09 > 0, which corresponds to M,, ,, £ {core; + (1 —
c)oseq: ¢ € {0,1}}. Each odds vector at time ¢ can be written
as x; = [o1¢,02(1 — ¢;)] with ¢ € {0,1}, where ¢; can
be understood as an index of the winning horse. Given the
fixed odds o7 and o, the odds vector sequence z; is fully
characterized by the outcomes c; so we will often refer to this
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sequence c; instead of the full odds vector x; in our discussion
below. Since ¢; € {0, 1}, the multiplicative gain at each round
is equivalently expressed as

o1¢ib; + 02(1 - Ci)(l — bt) = (Olbi)ci (02(1 - bi))lici,

where b; denotes the fraction of bet on horse 1.

As a natural extension, we also consider the continuous two-
horse race game with odds 01,02 > 0 which corresponds to
Mo, 0, = {Co1e1 + (1 —C)ogey: ¢ € [0,1]}. Now, unlike the
previous case where there is a single winner for each round,
the outcome of the game ¢ is [0, 1]-valued. Strictly speaking,
this game can be better understood as a structured two-stock
market, as there is no single winning horse in this setup.

We note that we use ¢; € {0,1} and ¢; € [0, 1] to denote
generic outcomes which could be deterministic, as opposed to
the stochastic process (Y3)72;.

C. The Blueprint

We now describe the gambling formalism we take in this
paper, which we adopt from [10], [13], [19], and [32]. Most of
the following exposition can be also found in [32, Theorem 1]
and [32, Section 4.1], but we also include some new arguments
such as the two-horse-race-based exposition and the converse
of Corollary 1 stated below.

Recall that we sequentially observe a sequence (¥3)$2, such
that E[Y;|Y*~!] = p for every t > 1 and some p € (0, 1), and
the goal is to estimate p at each time ¢ based on the observation
Y*—1. To estimate the unknown 1, we consider the two-horse
race with the odds vector

% 1-X

x; = xi(Yi;m) = [m’ 1—m

(D
for a parameter m € (0,1). Then, as a corollary of Proposi-
tion 1, we can prove:

Corollary 1: Assume that E[Y;|Y'"!] = u for every t >
1 and some p € (0,1). Then, the wealth process from
the continuous two-horse race with the odds vector x; =
[Ye 1=X1] s a martingale if m = p. Conversely, if m # p,
there exists a causal betting strategy whose wealth process is
strictly submartingale.

Proof: If m = p, (x¢){2, is fair by construction,
ie., E[xxi—1] = [£, 11__7””] [1,1], so we can apply

Proposition 1. For the case m # p, we assume m < [
without loss of generality; the proof for m > p is similar.
Then, b — £b+ 117;7’7‘1(1 — b) becomes a strictly increasing
function, and )

[ — 1

—b+—(1-b)>1

m + 1-— m( )
for any b € (m,1). Hence, in this case, any constant betting
strategy by = [b,1 — b] with b € (m, 1) satisfies

E[Wealth,|x'~!] = Wealth,_; (b;, E[x;|x""1])
Iz L—p
= Wealth,_; ( —b+ ——(1 —
ealth; 1(mb+1—m< b))
> Wealth;_1,

implying that the wealth process is strictly submartingale. [
Suppose that we have a gambling strategy b;(x!~1;m) for
each m, and let Wealth;(x"; m) be the wealth process of the
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strategy for the two-horse race game in Eq. (1) parameterized
by m.! Since (Wealth;(x’;u));>0 is a martingale (Corol-
lary 1), by Ville’s inequality (Theorem 1), for any J € (0, 1),

P{sup
t>1

or equivalently,

Wealth, (xt; 1)

1
> -5 <
Wealthg - 5} <9 @

P{ueC(Yh0), vt >1} > 146,

where we define the confidence set

Wealth;(xi;m) 1
t. L . v ? Z
C(Y"6) = {m € (0,1): 12}; Wealthy < (5}'

Since (C;(Y'%;8))g2, is nonincreasing (i.e., C;—1 C C;) by
construction, we can interpret that the confidence sequence
(Cr)$2, sequentially refines the estimate for p at every
round t by rejecting a candidate parameter m such that
Wealth, (x*;m) > %.

Here is a high-level interpretation of the gambling approach.
Hypothetically, we run the two-horse race with parameter m
for each m € (0,1) based on the observation (Y3)$2,. At the
very beginning, we start with the entire interval Cy = (0, 1)
as the candidate list for u. After each round of gambling upon
observing Y;, we compute the cumulative wealth from each
horse race, and if it exceeds a prescribed threshold, which is
1/6 for a level-(1 — 4) confidence sequence, we remove the
associated parameter m from the candidate list C;_1; at the
end of the round, C; then consists of the remaining values.
Intuitively, we can remove such values m with confidence as
the wealth process from the horse-race with parameter p is
martingale, and thus will not exceed the threshold most likely;
that is, if the wealth exceeds the threshold, the parameter m
is likely not p.

This intuition explains why we can expect a better gambling
strategy to result in a tighter confidence sequence: a good
strategy would grow its wealth as fast as possible from the
horse races with m # p, and thus rejects those values of m at
an early stage with few observations. Note that the converse
part of Corollary 1 ensures that there exists a betting strategy
that makes the wealth process a strict submartingale. In an
ideal scenario, therefore, one can expect that a good gambling
strategy may make arbitrarily large money in the long run
from the horse race with m # p, leaving only the true p in
the candidate list.

Remark 1 (Different Gambling Parameterization): While
the setting of gambling we consider is equivalent to those in
[19] and [32], the literature uses a different convention. For
the two-horse race setting with odds % and ﬁ and a betting
strategy (b)$2,, they write the multiplicative wealth as

1_ 1 - ~
Ectbt + m(l — Ct)(l — bt) =1+ )\t(m)(ct — m),

TAll the gambling strategies by (x?~1;m) considered in the current paper
are independent of m, but we explicitly include the dependence to subsume
a general use-case. For example, Waudby-Smith and Ramdas [31] studied
betting strategies that depend on m.
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by viewing the single number ¢; — m € [—-m,1 —m] as an
outcome of the horse race and defining

2 by 1 1 i
)\t(m)_m(lfm)_lfme[_1fm’m} 3

as a scaled bet. The downside of this standard convention is
that the (scaled) betting in Eq. (3) must depend on the under-
lying odds (and thus on the parameter m) by the range it can
take, which we view as rather unnatural. We believe that the
horse-race language we adopt in this paper separates m from
the betting strategy, and thus admits a cleaner interpretation.

D. Achievable Wealth Processes and the Method of Mixtures

As described above, it suffices to directly construct a valid
wealth process for a confidence sequence, without explicitly
finding a causal betting strategy that achieves it. In this paper,
the central technique we use is to consider a wealth process
defined by a mixture of a collection of wealth processes. The
purpose of this section is to ensure that we can use any mixture
of wealth processes (or mixture wealth in short) in constructing
a confidence sequence.

To show the main result of this section, Corollary 2, we first
state the following theorem which characterizes when a given
sequence of nonnegative functions can be realized by a causal
betting strategy, under a mild regularity assumption on the set
of market vectors M that holds for all games in Table I. In the
statement below, we use o to denote a concatenation between
two sequences, e.g., x' ! ox; = x'.

Theorem 2: Suppose that {oiei,...,0xex} C M for
some 01,...,0x > 0. Let (¥y: M'™1 — R3()%2, be a
sequence of nonnegative functions, where each W, at time ¢
maps past odds vectors x!~1 € M!~! to a nonnegative real
number. Assume that the following conditions hold:

(A1) (Consistency) For any ¢ > 1, any j € [K], and any

xt=1 c Mt—l
1
U, t—1 > —y t—1 e.). 4
—1(x )7;% ¢(x Ooje]) 4
(A2) (Convexity) For any ¢ > 1, any j € [K], and any x! €
Mt
9 K m .
Z %\I/t(xt_l ooje;) > Wy (x"). (5)
j=1 7

Then, there exists a causal betting strategy b, (x'~1) € Ag
that guarantees wealth at least Wealthq¥;(x?) for any market
sequence x' € M". Conversely, if Wealtho¥,(x!) is the
wealth achieved by a causal betting strategy given x!, then
(Py)52, satisfies (A1) and (A2) with equality.

It is worth noting that Cover [1] studied an equivalent
condition for achievable scores in predicting binary sequences
under the Hamming score. Theorem 2 can be viewed as an
analogous result for gambling, which can be viewed as a
prediction game under the log score. Its proof, which can be
found in Appendix B, is based on a simple inductive argument,
but it is not a direct adaptation of Cover’s proof.

Note that given any achievable wealth process, we can
explicitly define a causal betting strategy that achieves the
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wealth process using in the proof of Theorem 2 in Appendix B;
see Eq. (32) therein for an explicit expression of the betting
strategy. This implies that computing the cumulative wealth of
a betting strategy and computing the betting strategy itself are
essentially equivalent. Another immediate consequence of this
theorem is that, for a class of sequences of achievable wealth
functions, their mixture is always achievable.

Corollary 2: Consider a set of betting strategies (b?), where
for each strategy parameterized by 6 € ©, each of whose
wealth is lower bounded by Wealthy¥?(x") for any ¢ > 1 and
x' € M". Pick any probability measure 7(¢) on © and define
amixture U7 (x') £ [ WY (x")r(d6). Then, there always exists
a causal betting strategy whose wealth is lower bounded by
Wealtho W7 (x!).

Proof- For each 6 € ©, let Wealth!(x') denote the
wealth achieved by (b?)22, for x’. Since (Wealth?);>¢
satisfies (A1) and (A2) automatically by the converse part
of Theorem 2, so does the mixture wealth defined by
WealthT (x*) 2 [ Wealth?(x!)7(df) by linearity of expec-
tation. Therefore, by Theorem 2, there always exists a
causal strategy whose wealth is at least Wealthf (x") >
Wealtho U7 (x"). O
Hence, in what follows, we can use any mixture of achievable
wealth processes (or its lower bound) to construct a confidence
sequence.

III. TWO-HORSE RACE AND {0, 1}-VALUED PROCESSES

In this section, we first consider a {0, 1}-valued sequence
(Y;)22, such that E[Y;|Y*~1] = p for some u € (0,1). This
special case well motivates the idea of universal gambling and
admits a simpler algorithm than the general case.

We consider the gambling problem with odds vectors x; «—

[%, i:ﬁ ], which is a two-horse race game with odds 01 = %
and 09 = ﬁ Henceforth, for the two-horse race with odds

o1 and o, for each 6 € [0, 1], we let

t
Wea|thf(ct; 01, 02) é Wealtho H(Olg)&' (02(1 _ 0))1—0:‘
i=1
— Wealtho (010) =1 % (05(1 — )"~ Zi=1 ¢

denote the cumulative wealth of the constant bettor 6 after
round ¢ with respect to ¢! € {0,1}".

A. Motivation

To illustrate the idea of universal gambling, let us first
consider the wealth achieved by the best constant bettor in
hindsight:

0(.t.
Wealtht (C 701702) _ st t—sy —th(3t
oy *te M5

Wealth, -1 » ©

max
0€l0,1]

where h(p) £ plog% + (1 —p)log ﬁ denotes the binary

entropy function and s, £ Zle c;. Assume for now that
this wealth were hypothetically achieved by a causal betting
strategy and examine what we can obtain as a resulting
1

confidence sequence. If we plug-in ¢; <+ Y; and o; « m
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TABLE I
TYPES OF GAMBLING. THE HORSE RACE WITH K = 2 AND 01 = 02 = 2 REDUCES TO THE FAIR-COIN TOSS.THE STOCK INVESTMENT BECOMES THE

HORSE RACE IF THE MARKET VECTORS ARE RESTRICTED TO SCALED KELLY MARKET VECTORS, 1.E., Xt € {alel, ..
CONTINUOUS HORSE RACE IF THE MARKET VECTORS x¢ LIE ON THE SCALED SIMPLEX (01, . .

.,0K€K }, AND BECOMES
.,0K)®AK_1, WHERE © DENOTES THE

ELEMENTWISE PRODUCT.NOTE THE FOLLOWING DIFFERENCE IN THE CONVENTION: IN THE COIN TOSS AND HORSE RACE, THE
OUTCOMES ARE NOT ASSOCIATED WITH THE ODDS, WHILE THE OUTCOME OF THE STOCK INVESTMENT, WHICH IS THE
MARKET VECTOR X, INHERENTLY CAPTURES THE “ODDS” OF THE GAME

Outcome Bet Multiplicative gain /o
Coin toss ct €{0,1} by € [0,1] (2bt)ﬂ{c‘:1}(2(1 _ bt))l{”:g}
Horse race c € {ela"-yeK} b: € Ax_1 (Olbtl)l{C‘:el} "'(OKbtK)]l{ct:eK}
Continuous coin toss ¢ € 10,1] b € [0,1] 2bicr + 2(1 — be) (1 — &)
Continuous horse race C: € Ag_1 b: € Ax_1 o1by1ci1 + ...+ oxbikCik
Stock investment x: € RE, b: € Ag_1 (x¢, b)

and oy «— 1%, then since the wealth process is a martingale,

by Ville’s inequality, we have, for any 6 € (0, 1),

P{sup (1 — -S> 1)
t>
=plapta(E | ) zosg} <0

Here, S, £ 37, Y; and d(p || ¢) £ plog £ + (1 —p) log 1=2
denotes the binary relative entropy function, and the equality
follows from the identity that

() = ~Seen— 1= st -(2).

Since m — d(z || m) is convex for any =z € [0,1],
Eq. (7) yields a time-uniform confidence interval. Further,
since d(p || q) > 2(p — q)? by Pinsker’s inequality, Eq. (7)
readily implies

P{atz 1:pg (%—M%logg,%—&—\/%log%)} <.
(¥

Note that this is the time-uniform version of the confidence
interval implied by Hoeffding’s inequality, which states that,
for any 6 > 0,

ORI |

for any fixed ¢ > 1. In other words, achieving the best
wealth in hindsight in Eq. (6) would result in the time-uniform
Hoeffding in Eq. (8). Therefore, it is reasonable to aim to
achieve the best wealth in hindsight in Eq. (6), which is the
very idea of universal gambling. We note in passing that the
time-uniform Hoeffding in Eq. (8) cannot be constructed in
reality, as it violates the law of iterated logarithm (LIL) [12].
We refer interested readers to Remark 3 for further comments
on LIL. From an online learning perspective, the best wealth in
hindsight can only be achieved at the cost of additional regret
by a causal betting strategy, and thus the resulting confidence
sequence will tend to behave the time-uniform Hoeffding in
the long run with an additional slackness due to the regret.

B. A Universal Gambling Method via the Method of Mixtures

We now show that the method of mixtures almost achieves
Eq. (6) and essentially implies Eq. (8). We first consider the
following wealth process.

Theorem 3: There exists a causal betting strategy
such that for any o01,02, the wealth is given as
(Wealthoqét(ZE:l ¢i; 01, 02))1>0, Where we define

~ _Blx+it—z+1
¢t(x501,00) £ 0f 0" ( e — 2) (10)
B(§7§)

for € [0,#] and B(x,2') = % denotes the beta
function.

Proof: Consider a constant bettor [b, 1 —b] € Ay param-
eterized b € [0, 1]. If we define ¢?(x;01,02) 2 (01b)(02(1 —
b))!=* for x € [0,t], we can write the wealth for a constant
bettor as

t
Wealth{(c'; 01, 02) = Wealthy [ [ (01¢:b + 02(1 — ¢;)(1 — b))
i=1

t
= Wealth0¢f§ (Z C;; 01, 02) .
=1

We now take a mixture of the wealth processes over the
constant bettor b € [0,1]. We specifically choose the Beta
distribution 7(b) = B(b|%,1) o bz (1 —b)z over b € [0,1]
with the parameters (%, %) By Corollary 2, the mixture wealth
[ Wealth?(ct; 01,00) dr(b) = Wealthog (34_, ¢i;01,00) is
achievable. Note that the equality is a consequence of the
identity

/¢?(‘T;01702) dﬂ-(b) = gt(x;OhOQ) for any x € [Ovt]v

which, in turn, follows from the definition of the Beta function.
This concludes the proof. |

Remark 2: As pointed out earlier, it is not required to
explicitly find a sequential betting strategy that achieves the
wealth process to construct a confidence sequence. We remark,
however, that the so-called Krichevsky—Trofimov (KT) strat-
egy [15] defined as by (¢! 1) = (Zf;} ci+1)/(t+1) achieves
the wealth process defined in Theorem 3, for any 01,09 > 0.
It can be readily verified based on the argument of Theorem 2,
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but we explicitly explain the special case in Appendix C for
completeness.

By Ville’s inequality, the wealth process above can be
transformed into a confidence sequence as follows. A function
f: X — R for a convex set X C RP is said to be log-convex
if 2 — log f(x) is convex. Note that any log-convex function
is always quasi-convex.

Theorem 4: Let (Y;)52, be a {0, 1}-valued sequence such
that E[Y;|Y*~1] = p for some p € (0,1).

(a) For any 4 € (0,1], we have

Plpd(S Vi ) 25} <

t>1

(b) The function m — ¢f( 1

; m, = m) is log-convex and thus
the set

—) <3}

1]. Therefore,

@WWé{meml

sup ¢z (Zyw ml—m

1<i<t

is an interval (™ (y'; 0), 11," (y";6)) C [0,
equivalently, for any § € (0, 1), we have

P{3t > 1: ¢ (™ (Y"68), " (Y"58))} < 6. (1)
Proof: Let S; £ 371, V. Set x; — [X£, 4=X%] in the

two-horse race, so that (x;)§2, is fair. Hence, by Proposition 1,
any wealth process out of this game is a martingale. Since
there exists a strategy that guarantees Wealth; (Y'*

Wealthoqzﬁt(St, T u) by Theorem 3, we have

s ) =)
{ Wealth; (Yalullu) Zl}gé,

= P{su
tzll) Wealthg

’M’llﬂ)_

where the inequality follows from Vllle s inequality (Theo-

rem 1). Further, since m — log qﬁt( : m, T 1m) is convex by
11

Lemma 4, the equation ¢y (z; L L) = 1 in terms of m
always has two distinct real roots for any § € (0,1), and thus
the final inequality readily follows. (]

We remark that the confidence sequence in this theorem is a
special case of the more general confidence sequence derived
by universal portfolio in the next section, for {0, 1}-valued
sequences; see Remark 4. In practice, i (x; 8), 11" (x; 6) are
the roots of the equation ¢ (S;; %, 1_1m) = % over m € [0, 1],
and thus can be numerically computed by a 1D root finding
algorithm such as the Newton—Raphson iteration; see, e.g.,
[27, Sec. 8.1]. We note that, when the number of observations
t is small, it could be that there may exist no root or only one
root in (0, 1), as shown in the synthetic examples in Fig. 1.

By Pinsker’s inequality, we can find a simple outer bound
on the resulting confidence sequence in Eq. (11). The proof
of the following corollary can be found in Appendix B.

Corollary 3: Let (Y;)$2, be a {0, 1}-valued sequence such
that E[Y;|Y*~!] = p for some p € (0,1). Then, for any § €
(0, 1], we have

ACH) St ACHL)

P{thl:,ug_f }gﬁ,
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Lyl

e Bt oty
t B(i,i) ’

where we define S;

and

12)

11 1 11 e~ th(%)
¥0g5+tog~”()

(>

ge(x;6)

Remark 3 (An Asymptotic Behavior): Using this simplified
outer bound, we can argue that the confidence sequence
from universal gambling closely emulates the hypothetical
time-uniform Hoeffiding in Eq. (8). For ¢ sufficiently large,
the size of the interval in Corollary 3 behaves as

2 1 1
vV 2gf(St75) = \/t log 5 + E logt =+ 0(1),

%mﬁ = h(%) + £ logt + o(1) by Stirling’s
approximation, provided that S; = ©(t) and ¢t — S, =
©(t).2 Compared to Eq. (8), it suffers an additional term
O(y/(logt)/t) in the width of the confidence sequence. In
words, this shows that the universal gambling can indeed
implement a time-uniform Hoeffding as expected, with the
cost of additional width which vanishes in time. We remark
in passing that the law of iterated logarithm (LIL) [12]
implies that the optimal additional term is in the order of
O(y/(loglogt)/t), as also commented in [32]. Waudby-Smith
and Ramdas [32, Appendix C.2] proposed a betting strategy
based on a “predictable mixture” with the so-called stitching
technique [12] and analyzed that it achieves the optimal order
O(y/(loglogt)/t). Applying a similar idea of [13], Orabona
and Junb [19] also constructed another mixture portfolio based
on a prior inspired by [23], and showed that it achieves the
LIL based on a regret analysis for [0, 1]-valued processes.

since

IV. CONTINUOUS TWO-HORSE RACE
AND [0, 1]-VALUED PROCESSES

We now consider a more general case where the sequence
Y; is continuous-valued, i.e., ¥; € [0,1]. Likewise in the
previous section, we plug-in ¢; «— Y; with 07 « % and
02 — ﬁ to construct a subfair odds-vector sequence (x;)52,
for a continuous two-horse race. Following the same notation,

we define

t
£ Wealth H(OIEZb + 02(1 — Ei)(l — b))

i=1

Wealth? (¢*; 01, 02)

13)

as the cumulative wealth of the constant bettor b after round
t with respect to ¢ € [0, 1]*.
Note that we have an immediate lower bound

(010)% (02(1 — b))~

by Jensen’s inequality. Since the lower bound is in the form of
the multiplicative wealth (01b)% (09(1—b))' = of the discrete
two-horse race, the same time-uniform confidence intervals
constructed in Theorem 4 in the previous section is valid

Olgib + 02(1 — E,L)(]. — b) 2 (14)

2By Stirling’s approximation, log B(z,y) =~ (z — 7) logz + (y —
%) logy—(z+y— %) log(z+y)+ 5 10g(27r) for  and y sufficiently large.
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as a loose confidence sequence if we simply plug-in ¢ in

place of Y'. Note that though Y* € {0,1}" was assumed
in Theorem 4, the function defined in the theorem remains
well-defined for continuous-valued sequence Y* € [0, 1]%. This
lower bound in Eq. (14) can be viewed as a reduction to the
standard two-horse race game, since the lower bound becomes
tight if and only if ¢; € {0,1}. Albeit this results in a very
easy-to-implement confidence sequence for continuous-valued
sequences, it turns out that the Jensen gap in Eq. (14) leads
to a loose bound.

A more direct approach for this general case is to compute
the mixture wealth without invoking Jensen’s inequality. That
is, we will study how to compute the mixture wealth, with a
slight abuse of notation,

Wealth™ (¢%; 01, 09) & /Wealth’t’(?;ol,@)dﬂ(b)

t
> Wealthy; (Z Ci; 01, 02)7

i=1
where the lower bound is the wealth attained by a mixture
portfolio in the previous section and the inequality is followed
from Eq. (14). Here, the equality holds if and only if ¢
{0, 1}*. Hereafter, we call Wealth] (¢*; 01,02) the m-mixture
wealth, or the wealth of the w-mixture portfolio. We remark
that Cover [2]’s universal portfolio (UP) is a Beta(b; o, §)-
mixture portfolio; note that a = =1ora =0 = % are the
canonical choices due to the simplicity [2] and the minimax
optimality [3], respectively. The beta distribution is a natural
choice for an ease of implementation, since it is a conjugate
prior of the summand b*(1 — b)!~*, which can be understood
as the (unnormalized) binomial distribution.

A. A Mixture Portfolio

We first explore how we can compute a mixture wealth
exactly, i.e., without any approximation. While Orabona and
Junb [19] alluded to this idea of directly implementing
Cover’s UP to compute a confidence sequence, here we
explicitly describe the algorithm in a general form with any
m-mixture for a reference. We also show that the resulting
confidence set of any mixture portfolio is always an interval
as desired. (This was left as a loose end in the initial version
of [19] (arXiv:2110.14099v1), but also resolved in its revision
(arXiv:2110.14099v3).)

It turns out that the m-mixture wealth can be computed in
O(t) at round ¢ instead of O(2!) via a dynamic-programming
type recursion, as shown in the following theorem. This
essentially appeared in the discussion on computing the UP
by Cover and Ordentlich [3, Section IV]. Here we present a
general statement for any mixture portfolio.

Theorem 5: For any prior distribution 7(b) over (0, 1), the
m(b)-mixture wealth is achievable and can be written as

Wealth? (&; 01, 05) Wea|thozo’fog ko (k)et(k), (15)
where we define
/ b (1 —b) =  dn(b), (16)

7149

t

> ra-ar

zte{0,1}t:k(zt)=ki=1

(k) = (17)

and k(zt) = 22:1 z;. Furthermore, for each ¢ > 1, we have
(1-2)a1(0) if k=0,

dk)y=Ree k-1 +1-c)t (k) if1<k<t—1
et Tt —1) if k=t

(18)

Proof: We first note that we can write the cumulative
wealth of any constant bettor b as

Wealth? (¢%; 01, 02)
Wealtho

- % e

zte{0,1}t i=1

(oo(1 —¢)(1 =b) =, (19)

where the equality follows by applying the distributive law to
Eq. (13). To see Eq. (15), we first note that continuing from
Eq. (19), we have

Wealth c ;01,02)
Wealthg

:zt: 01b 02 ].—b))

S =

zte{0,1}t:k(zt)=k i=1

(1—7¢)t=

)

(20)

and thus integrating over b with respect to 7(b) leads to
Eq. (15) by the definition of Eq. (10). The recursive update
equation in Eq. (18) is easy to verify. ([
1) Confidence sequence from mixture portfolio: The wealth
process of any mixture portfolio yields a confidence sequence
as follows, which turns out to be always in the form of
confidence intervals as desired. In what follows, we define
and denote the empirical mean of Y* as fi; £ 1 31 | V;.
Theorem 6: Let (Y;):2; be a [0,1]-valued sequence such
that E[Y;|Y*~!] = p for some p € (0,1).
(a) For any § € (0, 1], we have

P{suph7 (;Y") = =} <4,

t>1

S

where we define

Wealth? (y*; m, 1 —) k)
Wealthg Z
and y'(k) is defined analogously to Eq. (17).
(b) The function m — h7 (m;y') is log-convex and thus the
set

hi(m;y') &

~ . 1
Cry0) 2 {me0,1]: sup A7 (miy') < 5}
1<i<t 4]

is an interval (27"°" (y"; 6), iF "P(y'; 6)) C [0, 1]. There-
fore, equivalently, for any ¢ E (0,1), we have

P{3t > 1: ¢ (" (Y'50), iy (Y 6))} < 6.
(¢) fir € CF(Y'") with probability 1.
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Proof: The proof of part (a) follows the same line of that
of Theorem 4, with applying Theorem 5. For part (b), note that
m +— m~*(1 —m)~ (=) is log-convex for each k = 0,...,t
by Lemma 4, a sum of any log-convex functions is also log-
convex (Lemma 5), and so is the function m +— A7 (m;y") asa
function of m. Finally, the fact that i; € C”(Yt) almost surely
readily follows from that AT (1 y") <1 < < by Lemma 1,
stated below. ]

The last property (c) that the resulting confidence set C;
always contains the empirical mean i; will be proven useful
for a lower-bound approach in the next section. An interesting
lemma used in proving (c) is that no constant bettor can earn
any money from the continuous two-horse race with odds
(%, 1—1ﬁt) with any underlying sequence ¢!, at any round,
deterministically. Its proof is deferred to Appendix B.

Lemma 1: For ¢ € [0,1]%, let fiy = +>>'_, &. For any
b € [0, 1], we have
1 1
Wealth} (& =, ———) < Wealthy.
pe 1 — i

2) Implementation and complexity: Similar to Theorem 4,
we can apply the Newton—Raphson iteration or the bisect
method to numerically compute the confidence intervals.
At each round ¢, however, it takes O(M¢t) time complexity
if M is the maximum number of iterations in a numerical
root-finding method, since evaluating AT (u;y*) for a given p
takes O(t). As a result, to process a sequence of length T,
it takes a quadratic complexity O(T?).

As alluded to earlier, Orabona and Junb [19] studied the
wealth process of Cover’s UP which is the Beta(2, 3)-mixture
portfolio, and considered a tight lower bound based on a regret
analysis of UP. They first noted that, for any b € [0, 1],

Wealth® (¢*; L, 1) T (z)
min ,
Wealth?(¢t) ~ 0] gf(z)
where ¢?(z) 2 b"(1—b)*~* and ¢¥7 (z) is defined in Eq. (12).
They then considered the following lower bound

T
( 1 L) A

1 zl0.1] g (z)
“‘KT(:L.)

WealthUP<

> max Wealth
bel0,1]

1 1

- — in —t— 21
m,l_m>me[{{1ﬂqt*(ct>m7 (21

> Wealth? ) (c
where b*(¢") £ argmaxc( ) Wealth?(¢?). The second term
of Eq. (21) can be bounded by a closed-form expression of the
minimax regret (see [19, Theorem 5]), and thus, in principle,
solving the maximization problem to find b*(¢?) leads to a
confidence sequence. Since, however, the lower bound is not
a quasiconvex function as a function of m, Orabona and
Junb [19] came up with an algorithm, dubbed as PRECiSE-
CO96, which numerically computes the intervals based on
the final lower bound in Eq. (21). While this algorithm gives
empirically tighter intervals for small-sample regime and com-
parable performance in a long run compared to the existing
methods of Howard et al. [12], the algorithm and analysis
are rather complicated by nature. Moreover, the PRECiSE-
CO96 still suffers the same per-round time complexity O(t)
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of Cover’s UP, since when computing b*(¢?), maximizing
Wealthff(&t) necessitates to evaluate the function which has ¢
summands. They also proposed another algorithm PRECiSE-
A-CO9%6 as a relaxation of PRECIiSE-C096, by invoking a
version of an inequality due to Fan et al. [6] on their final lower
bound, which runs in O(1) per round. We propose a different
approach of constant per-round complexity in the next section.

Remark 4 (A Special Case of Discrete Processes): For a
discrete sequence ¢* € {0,1}%, it is easy to check that the
cumulative wealth in Eq. (13) simplifies to

t

Z 0102 k¢t ) (k) = Olzle C'iofz/_ZE:l CW}ZT (Z 51)
i=1
This implies that the mixture wealth in Eq. (13) with respect
to a discrete sequence is equivalent to that of the standard
two-horse race as expected, and thus we can use the sim-
pler two-horse-race-based method for {0, 1}-valued processes
without invoking the more general algorithm in Theorem 5.
Since the horse-race-based method takes O(T') complexity
for a sequence of length 7', while the general algorithm
may suffer O(T?) as elaborated below, it is worth treating
discrete processes separately as a special case. We note that
this observation was not realized in [19].

B. A Mixture-of-Lower-Bounds Portfolio

In this section, we propose a straightforward and compu-
tationally efficient alternative to a mixture portfolio, based
on a new tight lower bound to the wealth of a constant
bettor. To motivate our development, two remarks on the
computational aspects on Cover’s UP are in order. We first
note that the choice of the Beta distribution Beta(b; ar, 3) as a
mixture distribution 7 (b) is closely related to the fact that the
Beta distribution is the conjugate prior of the (unnormalized)
binomial distribution b*(1 — b)*~* (see Eq. (16)), where the
specific choice o = ( = % is for its minimax optimality.
Second, we remark that the computational complexity of UP
is mainly in computing the term in Eq. (17), which originates
from the alternative wealth expression in Eq. (19) followed by
the distributive law applied on Eq. (13). Recall that Orabona
and Junb [19] considered a lower bound on the wealth of UP
to circumvent the computational complexity.

Alternatively, we propose to apply a tight lower bound on
the cumulative wealth in Eq. (13) of constant bettors first,
and then consider a mixture of the lower bounds. In this way,
we can detour applying the distributive law and thus avoid the
costly recursive expression in Eq. (17), resulting in a wealth
lower bound that can be computed in constant complexity.
Note that it is still a valid approach for constructing a
confidence sequence as PRECISE is, since we can always use
a deterministic lower bound on the wealth process in Eq. (2),
as it only results in a larger (and thus worse) confidence set.

In the following, we first state a new lower bound to be
applied on Eq. (13). Since a mixture of the lower bounds is
considered, we define a new mixture distribution in the form of
a conjugate prior, by regarding the form of the lower bounds as
an unnormalized exponential family distribution. While the use
of conjugate prior is mathematically analogous to the choice of
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TABLE II
DEFINITION OF fn, (y, b, m) IN LEMMA 2
2n—1 T T
1 b\ k Y\ 2n y\k Y\ 2n b .
—(1-— -Z) —-(1-= - = — >
> k(l m) {(1 m) (1 m> }+(1 m) logm ifbe[m,1),y >0,
fn(yzbvm) = 2];_,11 1 bk - _— - b (22)
g\2n y g\2n .
—(1-— -Z) —-(1-= - = — <1
> k(l m) {(1 m) (1 m) }+(1 m) log = ifbe (0,m].y<1
TABLE III
AN ALTERNATIVE EXPRESSION OF LEMMA 2 WITH THE DEFINITION OF THE EXPONENTIAL-FAMILY DISTRIBUTION IN EQ. (25)
b Y\ 2n Y\ by 2n—1 y\2ny
I Gt (R R (RS ) N () ) I AR
b=+b— 2 T 75 2n %l G %l 2n 23
m.m = -2y —-(1=-2 -2z i <1
¢"(m’((1 m) (1 m) )k:l ’(1 m) ) itbe (O,mly<1
TABLE IV
DEFINITION OF E£">(m; yts p( ,nél), péQ), (2)) IN THEOREM 7
™ (mi gt oD gD 52 p(2)y & TZn(pnly'sm) + o6 mn(y'sm) + né )) +mZn(pn(7? m) + pg ma (35 m) + 1)
ht (m’yvp 7770 7p0 I 0 )_ 2) . (24)
mZn(po 7770 ) +mZn (po > Tl )
T , . 2n—1
the Beta distribution in Cover’s UP, we remark that our choice log b (: o) 2 ”z: (1—2)* +nlog
of prior is purely based on computational considerations, and & PnlTs Po1) = — g PR 8%
we do not claim any optirnality of this choice, in contrast to a
the optimal choice of Beta(b; 3, 3) in Cover’s UP. where
1) A new lower bound on a logarithmic function: We start Zn(pym / on(z;p,m)d
with the lemma below, which provides a way to approximate
a logarithmic function from below with polynomial functions. 18 the normalization constant. Note that if p; = ... = papn—1 =

This is a generalization of [32, Lemma 1], which is subsumed
by the case with n = 1. The proof can be found in Appendix B.
In what follows, for the sake of simple notation, for some
re[0,1], weletz =1 —z.

Lemma 2: For any n € N and m € (0, 1), we have

log<b% + B%) > fuly,b,m),

where f,,(y,b, m) is defined in Eq. (22).

We remark that the positive integer n > 1 can be understood
as an order of approximation, where a higher order n would
result in a tighter lower bound. We conjecture that this bound
becomes monotonically tighter as n increases, but we do
not have a formal proof. Our experiments empirically show,
however, that using the lower bound with larger n leads to
monotonically tighter confidence sequences; see Section VI-A
and Fig. | therein. A trade-off in choosing n is discussed in
Remark 5 below.

As alluded to earlier, the form of the (exponentiated) lower
bound leads us to defining an exponential-family distribution
pn(z;p,m) over x € (0,1) with parameters p € R?*"~! and
n >0 as

a Onl;0,m)

N , 25
Zn(pym) =

(x5 p,m)

n = 0, it becomes a uniform distribution over [0, 1]. Further,
for n =1, if p; > 0, we can write

Zl(plan) = eplpl_n_lf)/(n + 1apl>7 (26)

where (s, z) Jyt"7te7tdt for s > 0 denotes the
lower incomplete gamma function. Moreover, we use the bar
notation Z = 1 — x for any = € [0, 1] in what follows.

With these definitions, the lower bound in Lemma 2 can be
succinctly rewritten as in Eq. (23).

Since it is easy to check

bn (3 P, 1) b0 (25 Pg, M0) = n(x; 0 + Po, 1 +10)  (27)

by definition, we obtain the following lower bound to the
cumulative wealth of a constant bettor.

Lemma 3: For any n € N, m € (0,1), b € [0,1], and
yt € [0, 1], we have
Wealth?(y?; L, L

yam —

Wealthg

), %(;;pn(yt;m),nn(yt;m))ﬂm,l)(b)

b . *t. - *t. 7
(5 Pu @5 ), 1 (7577) ) L0, 0),

where we define * =

Yi
m

(') )}

(0-2)"- -
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fork=1,...,2n—1, and

212"

(Y’
=1

Note that p,,(y*;m) and 7, (y*;m) can be updated sequen-
tially without storing the entire history y'. To see this, define
s;(yt) 2 S2F_, yl for y* € [0,1]". We can then rewrite the
above expressions as

S (550

j=0 j=0

(pn(y'sm))i

fork=1,...,2n—1, and

B i <237‘1> (SJ%)J

J=0

M (y';m)

2) Lower-bound universal portfolio: We now propose to
consider a mixture of the lower bounds over b € [0, 1]. For
the sake of computational tractability, for p(()l) € R 1, 77(()1) €
R, p(()2 RQn*l,néz) € R, we can define a conjugate prior
over b € [0, 1] that corresponds to the lower bound defined in
Lemma 3 as

s 08 i, P ng?) (28)
2) (2
N ¢n<m,po 15 L) () + 60 s 067167 0.0 (1)

1 1 2 2
mZ(pS” 05") +mZa(p 0

We will use this prior distribution to compute a mixture, which
is of a different shape compared to the beta prlor of Cover’ s UP
in general. In particular, however, if we set p0 =0 77

0 for each ¢ = 1,2, then the prior an)(b) boils down the
uniform distribution over [0,1] for any m € [0,1], and the
resulting mixture wealth lower bound can be viewed as a
lower bound to Cover’s UP with the uniform prior (i.e., B(1,1)
prior). We thus call the resulting wealth lower bound the lower-
bound UP wealth of approximation order n, or LBUP(n) in

short.
Theorem 7: Let n > 1 and m € (0,1). If n(b) =

L 1) (2 (2

5 (b Po Mo Py Mo ), for any y' € [0,1]%, we have
Wealth] (y'; =, L) ., O 1O (2 (2
m’ m > h
Wealthe > h (miy'spe Py sy )

where we define E§ (m;y; p(()l),n(()l), pg ), 77(() )) in Eq. (24).
Proof: By the aforementioned property in Eq. (27), the
lower bound readily follows from the definition of the prior
in Eq. (28) and the lower bound of Lemma 3. (]
The wealth lower bound can be viewed as a discrete
mixture, which is called a hedged betting in [32], over two
continuous mixture wealth processes. Here, the first term
Zn(p,,(yt;m), nn(yt;m)) corresponds to the mixture of con-
stant bettors b € [m,1) and the second term corresponds
to b € (0,m], and they are weighted by (1 — m) and m,
respectively.
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3) Confidence sequence from LBUP: We now state the
resulting confidence sequence from this lower bound approach,
which is our main technical result. It is worth noting that
since any mixture wealth process has an interval guarantee
(Theorem 6), the lower-bound approach can be easily made
to inherit it, by choosing the largest interval that contains the
empirical mean.

Corollary 4: Let (Y;)$2, be a [0,1]-valued sequence

such that E[Y;|Y'"'] = pu for some u € (0,1). Let
(o (yt; 8), 1y (yt; §)) be the largest interval such that

e € (™ (y'0), i ("5 9)) (29)
n 1

c {m € (0,1): b (msyts oY miY, o 0) < 5}7

where [i; £ % Zle y; denotes the empirical mean. Then, for
any d € (0,1], we have
P{3t > 1: p ¢ (™ (Y'0), " (Y 8)} < 6.

Proof: Since the lower bound lower-bounds the mixture
wealth and the mixture wealth always guarantees a sublevel
set to be an interval, we can guarantee that the sublevel set
defined by the lower bound always subsume the confidence set
Cr(y') induced by the mixture wealth. Further, 7i, € CF(y")
by Theorem 6(c), (jil°% (y*;8), 1P (y*; 0)) satisfying Eq. (29)
must be a valid uniform confidence interval (at level 1 — §).

]

A reasonable choice of the hyperparameters for the pr1or
is all-zero, ie., p(()) =0 776) = 0 for each 7 = 1,2
In Section VI, we plot the evolution of the wealth processes of
UP and LBUP with simulated datasets, to illustrate the power
of the lower-bounds approach; see Fig. 1.

4) Implementation and complexity: Our implementation
employs the bisect method to compute the confidence
sequence with the approach, as the Newton—Raphson iteration
is hard to apply as the derivative of the LBUP wealth with
respect to m is difficult to compute.

We remark that to compute the lower bound of Theorem 7
for any value of m € (0,1), it suffices to keep track of
the (unnormalized) empirical moments (s;(y’))52,, a con-
stant number of real values. As a result, the per-step time
complexity is O(n) and the storage complexity is O(n) for
any time step. This is in sharp contrast to Cover’s UP (as
shown in Theorem 5) and PRECISE-CO96 of [19], which
require to store the entire history Y* and O(t)-time complexity
at round ¢.

Remark 5 (An Approximation—Computation Trade Off in the
Approximation Order): The lower bound in Eq. (24) with the
parameter n > 1 can be understood as an approximation using
empirical moments (s;(y"))32,. As explained after Lemma 2,
we empirically show that the lower bound with larger n leads
to tighter confidence sequences. Note, however, that there
exists a downside for using a large n in practice. To implement
the wealth lower bound in Theorem 7, we need to compute
the normalization constant Z, (p,n), which is of the form

2n—1

/01 " exp( Z akxk) dx.

k=0
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In general, there is no closed-form expression for this kind of
integrals except the special case of n = 1 with p; > 0; see
Eq. (26). It is thus necessitated to rely on numerical integration
methods,® but a higher-order n may lead to numerical insta-
bility (especially for m ~ 0 and m ~ 1) and longer time to
compute the integral. We empirically found that n = 3 already
closely approximates the performance of Cover’s UP while
giving a decent improvement to n = 1 or 2, and using a
larger order usually provides only marginal gain.

5) A Hybrid Approach for the Best of Both Worlds: On the
one hand, while the UP approach becomes time-consuming
as a sequence gets longer, it demonstrates a great empirical
performance especially for a small-sample regime. On the
other hand, the LBUP approach performs almost identically
to the UP approach with only constant per-round complexity,
but it requires some burn-in samples to be tight enough as a
lower bound as demonstrated below in Fig. 1.

To achieve the best of the both worlds, we can hybrid the
UP and LBUP approaches: namely, we run the UP for an
initial few rounds, then we run the suboptimal lower-bound
UP afterwards. We emphasize that, in principle, any gambling
strategy can be run in the first part, but we specifically use
UP for its outstanding performance.

Formally, the performance of the hybrid approach can be
stated as follows:

Corollary 5: Consider the gambling strategy that runs UP
for the first ¢yp steps and switches to run LBUP afterwards.
If the LBUP strategy uses the prior of the form

T (b; P (Y17 3m), 0 (Y 5m), P (F1% ), 1 (5775 1)),
(30)

then this hybrid gambling strategy attains the cumulative
wealth defined in Eq. (31) at time step ¢ > typ.

We remark that the choice of prior in Eq. (30) is natural as
it is induced by the first part of the sequence y**. We empiri-
cally demonstrate the effectiveness of this hybrid approach in
Section VI.

V. RELATED WORK

Historically, Darling and Robbins [5] first introduced the
notion of confidence sequence, and the idea was further
studied by Hoeffding [11] and Lai [16]. A recent line of work
such as [12], [13], [19], [22], and [32] has brought this idea
back to researchers’ attention. The concept of confidence
sequences has a close connection to “safe testing” [8]. The
idea of gambling for confidence sequences (or equivalently,
time-uniform concentration inequalities) can be found in
several different areas. Shafer and Vovk have advocated
to use the idea of gambling to establish a game-theoretic
theory of probability [25], [26]. Building upon the gambling
approach, Shafer [24] proposed to test by betting. Waudby-
Smith and Ramdas [32] explored the gambling-based
approach for constructing confidence sequences in a great
detail, and derived and analyzed various betting algorithms.
Hendriks [10] also explored a similar idea of using betting

3In the experiments, we used the scipy.integration.quad method
of the python package scipy [30].
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algorithms and numerically inverting the wealth processes
into confidence intervals. Jun and Orabona [13] proposed
to use coin betting for developing parameter-free online
convex optimization algorithms using the notion of regret,
and constructed a time-uniform concentration inequality
that achieves the law of iterated logarithm for sub-Gaussian
random vectors in Banach spaces; see [13, Section 7.2].
Orabona and Junb [19] examined the idea of Cover [2]’s
universal portfolio and its regret analysis to construct tight
confidence sequences based on a numerical method. For a
more detailed literature survey on the idea of gambling for
confidence sequences, we refer an interested reader to [32,
Appendix D] and [19, Section 2], and references therein.

Waudby-Smith and Ramdas [31] studied the problem of
estimating the mean of a set of deterministic numbers via
random sampling without replacement. As illustrated by
Waudby-Smith and Ramdas [32], any construction of a confi-
dence sequence under the current problem setting (including
thus the UP and LBUP algorithms) can be easily converted into
a confidence sequence for the sampling without replacement
problem.

The algorithms of Orabona and Junb [19] (dubbed
as PRECiSE-C096, PRECiSE-A-C096, and PRECiSE-R70)
based on the regret analysis were inspired by Rakhlin and
Sridharan [21], who showed an essential equivalence between
the regret guarantee of certain online learning algorithms
and concentration inequalities. In contrast to such a regret-
based approach, the current paper illustrates that a sharp
concentration can be obtained directly via a deterministic
lower bound of supermartingales, without invoking the notion
of regret. We acknowledge, however, that a regret analysis
might be essential to analyze the resulting concentration
inequality in a closed form, as was done therein. PRECiSE-
A-C0O96, a constant-complexity version of PRECiSE-C096,
used a similar idea of lower bounding the multiplicative
wealth by an inequality of Fan et al. [6]. The difference in
our work is twofold. First, we rely on Lemma 2, which is
a higher-order-moments generalization of the lower bound;
see Appendix A-B. In the next section, we also empirically
show that the LBUP algorithm with n > 1 clearly improves
LBUP with n = 1, which corresponds to the technique of
Fan et al. [6] and thus Orabona and Junb [19]. Second, rather
than maximizing over the betting b € [0,1] and invoking
the regret bound, we take a mixture over the lower bound
as if it were the target wealth process. While conceptually
being simpler in the sense that it does not invoke a regret
bound, the downside of our mixture approach is the com-
putational bottleneck in the numerical integration step; see
Remark 5. We finally remark that a mix-and-match approach
of our higher-order-moments bound (Lemma 2) and the regret
approach [19] is natural; we note, however, that maximizing
the lower bound over b in Lemma 3 may not admit a
closed-form expression for n > 1, which necessitates to invoke
a numerical optimization. We do not pursue this direction in
the current paper. Finally, Orabona and Jun proposed another
variant PRECiSE-R70 inspired by the mixture idea in [23]
and showed that the resulting confidence sequence achieves
the law of iterated logarithm.

Authorized licensed use limited to: MIT. Downloaded on September 26,2025 at 22:09:34 UTC from IEEE Xplore. Restrictions apply.



7154

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 10, OCTOBER 2024

TABLE V
DEFINITION OF THE CUMULATIVE WEALTH ATTAINED BY THE HYBRID STRATEGY IN COROLLARY 5

MZn (Pn(y';m), 1 (y's m)) + mZn(pn (F5 M), 10 (§'; M)

1 1
Wealth?UPP (thP; —, —) .
m

m

M Zn (Pn (Y123 m), 1 (yP0P s m)) + mZn (pn (§Hor; M), n (ghor;m))

€1V

TABLE VI
COMPARISON OF EXISTING CONFIDENCE SEQUENCES BASED ON GAMBLING FOR BOUNDED STOCHASTIC PROCESSES AND PROPOSED
ALGORITHMS.THE “CONVEXITY” INDICATES IF THE WEALTH ATTAINED BY A GAMBLING STRATEGY IS GUARANTEED TO BE QUASI-CONVEX AS A

FUNCTION OF m, SO THAT IT NATURALLY INDUCES CONFIDENCE intervals; X INDICATES THAT THE CORRESPONDING WEALTH IS NOT GUARANTEED
TO BE QUASI-CONVEX.THE COMPLEXITY IN THE LAST COLUMN DESCRIBES BOTH (PER-STEP) TIME COMPLEXITY AND STORAGE COMPLEXITY AT

TIME STEP ¢

Method Idea Convexity  Complexity
GRAPA [32] a causal approximation of the Kelly criterion [14] X O(t)
LBOW [32] GRAPA + an inequality due to [6, Lemma 4.1] X O(t)
dKelly [32] a mixture wealth of any finite bettors X (bettor-dependent)
ConBo [32] bet against confidence boundaries O (bettor-dependent)
UP [2] a Dirichlet mixture wealth of constant bettors (o) o(t)
PRECISE-CO96 [19] a lower bound on the wealth of UP via a regret upper bound (0] O(t)
PRECISE-A-CO96 [19] PRECiISE-C0O96 + [6, Lemma 4.1] (0] o(1)
PRECISE-R70 [19] PRECiISE-C0O96 with weight from [23] (0] O(t)

HR (Theorem 9) UP restricted to two-horse race (= UP for {0, 1}!) (0] 0(1)
LBUP(n) (Theorem 18) a mixture of lower bounds of the wealth of constant bettors (0] O(n)
HybridUP(n) (Corollary 21) a combination of UP and LBUP(n) (0] O(n)

At a high level, the lower-bound approach (LBUP) we
propose in this paper is similar in spirit to [13], [19], [32] that
rely on a wealth lower bound. Among these, however, LBUP
is more closely related to the “lower bound on the wealth
(LBOW)” approach of [32], in the sense that both LBUP
and [32] rely on a lower bound on log(b% + (1 — b)%);
as alluded to earlier, we note that the lower bound in Lemma
16 generalizes the one used by LBOW. As alluded to earlier,
Lemma 2 is followed from a new property of the function ¢ —
log(1+1t) (Lemma 7), which can be viewed as a higher-order
extension of the proof technique of [6, Lemma 4.1]. Since
this inequality has been used to derive exponential inequalities
for martingales [6] and empirical Bernstein inequalities [12],
[31], this technique could lead to a tighter result of another
problem in this domain. The idea of the conjugate prior is also
common in the literature, including the beta prior of Cover [2]
and a more recent example in [12]. A subtle difference in our
approach is that we directly take a mixture over a lower bound
with respect to a conjugate prior tailored to the new lower
bound we propose, other than aiming to maximize the lower
bound with a rather heuristic approximation as done in [32].

The topic of universal portfolio selection is a classical topic
in information theory that has been studied for more than three
decades, and has been established to have intimate connections
to problems like data compression and sequential prediction.
An interested reader is referred to [4] and the references
therein for a detailed treatment of these topics and their inter-
connections: Chapter 6 explores the horse-race formalism as
well as establishes connections between betting on horse races
and data compression; Chapters 11 and 13 discuss universal
compression and connections to prediction and hypothesis
testing; Chapter 14 investigates the closely allied concept of

Kolmogorov complexity and the minimum description length
(MDL) principle (see also [7] and [9] for a detailed treatise
on the MDL principle); and Chapter 16 delves into portfolio
selection and the UP method. Universal portfolio selection
still remains a widely studied topic because a method that
simultaneously achieves low regret and low time complexity
has been elusive—see [17], [18], [28], and [33] and the
references within for recent work in this direction.

VI. EXPERIMENTS

We implemented the algorithms studied in this paper in
Python and SciPy [30]. The code is publicly available.* We
translated the official MATLAB implementation® of PRECiSE
algorithms by the authors of [19] to Python for comparison.

A. Evolution of Wealth Processes

To illustrate the tightness of the proposed lower bounds,
in Fig. 1, we visualize the evolution of the wealth processes
of the discrete-horse-race-based gambling (Theorem 4) which
we abbreviate it as HR, UP (Theorem 5, with the uniform
prior), and LBUP (Corollary 4, with the uniform prior) con-
fidence sequences, varying the parameter m € (0,1) for t €
{1,5,10,50,100,500}. We used single realizations of i.i.d.
processes under Bern(0.25), Beta(1,3), and Beta(10,30)
distributions. Note that these distributions share the common
mean p = 0.25, while the variances are decreasing in the order
(=, 5, and 22¢).

In all the cases, UP is supposed to achieve the highest
wealth. For the Bern(0.25) process in (a), the HR and UP

“https://github.com/jongharyu/confidence-sequence-via-gambling
Shttps://github.com/bremen79/precise
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—o— HR
—-- UP

LBUP (n=1)
-+ LBUP (n=2)
s+ LBUP (n=3)

—o— HR
—-- UP

LBUP (n=1)
-+ LBUP (n=2)
-+ LBUP (n=3)

—— HR
—-- UP

LBUP (n=1)
-+ LBUP (n=2)
-+ LBUP (n=3)

(c) An i.i.d. Beta(10,30) process.

Fig. 1.

The evolution of the wealth processes with respect to single realizations of i.i.d. Bern(0.25), Beta(1,3), and Beta(10,30) processes. Note that the

true mean parameter p is 0.25 for all three cases and is indicated by the vertical lines, while the variances are decreasing in the displayed order. HR and
UP correspond to the two-horse-race-based algorithm and the UP-based algorithm, respectively. The x-axis corresponds to the parameter m, and the y-axis
indicates the logarithmic cumulative wealth of each strategy for the game with a corresponding parameter m. The horizontal lines indicate an example threshold

1o —
In 51 ~ 2.996 for § = 0.05.

confidence sequences are equivalent, as pointed out earlier. For
the beta distributions (b) and (c), UP accumulates significantly
larger wealth than HR, and the suboptimality gap gets larger
as the variance decreases, which is expected by the Jensen gap
in Eq. (14). We also remark that the UP and HR wealth are
always log-convex, as stated in Theorems 4 and 6.

As shown in the graph, the LBUP wealth tightly lower
bounds the UP wealth. We observe that the gap becomes
smaller as the round goes on, and using a larger order
n consistently improves the approximation, by a significant
level especially in earlier stages. Moreover, the lower bound
is particularly tight around the true mean and the typical
threshold level ln% < 5,% and thus can be used to construct a
tight outer bound of the UP confidence sequence.

B. Confidence Sequences

We also visualized the confidence sequences of the algo-
rithms studied in this paper and PRECiSE algorithms in Figs. 2

SNote that In ﬁ &~ 3 and In 0.7})1 ~ 4.6.

and 3.7 Similar to the experiment settings in [19] and [32]
in turn, we considered ii.d. processes under Bern(0.5),
Beta(1, 1), Beta(10,10) (in Fig. 2), Bern(0.25), Beta(1, 3),
and Beta(10,30) (in Fig. 3) distributions. Here, CB is a
naive method based on an alternative odds vector construction
x¢ < [1=Y:+m, 1+Y;—m], which can be viewed as running
the continuous coss; cf. Eq. (1) and see Table I. We include
this simple baseline to highlight the effect of the form of
gambling in constructing confidence sequences. We used the
Beta(b; &, 1) prior for the UP and the UP component in the
hybrid algorithms, and used ¢y = 50 for the hybrid algorithm
in Eq. (31).

In all the cases, UP achieves the tightest confidence
sequences as expected, as the others are based on lower bounds
to UP. While the HR algorithm is equivalent to UP for discrete
sequences, it becomes loose as the variance decreases in (b)

7We do not compare with the methods of Waudby-Smith and Ramdas [32],
since our main focus is on developing an efficient, yet tight approximation
of UP; instead, we refer an interested reader to the experiments of [19] for a
comparison of PRECiSE algorithms to [32].
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(a) With i.i.d. Bern(0.5) processes.
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(c) With i.i.d. Beta(10, 10) processes.

Fig. 2. Examples of confidence sequences with respect to i.i.d. Bern(0.5), Beta(1, 1), and Beta(10, 10) processes at level 0.95. For each distribution,
shown here are the averages of five independent runs. The first column plots the confidence sequences. The second column plots the gap of the size of the
confidence sequences from that of UP in log scale, where we took maximums of the differences and 10~7 for visualization. (Note that for the binary process
example, HR is equivalent to UP.) The last column shows the elapsed time for each algorithm. For the continuous process examples in (b) and (c), the results
are shown in two rows to avoid clutters. The results from UP, PRECIiSE-CO96, LBUP’s are shown in both rows for comparison, and the second row contains
results from constant-per-step-complexity algorithms PRECISE-A-CO96 and HybridUP’s.

and (c). Although the LBUP methods give vacuous bounds in In the second column, we plot the behavior of the confidence
the small sample regimes (~10 samples), but quickly approach  sequences at a finer scale, by showing the size of confidence
to the behavior of UP as ¢ increases; this was also observed sequences relative to that of UP. We can see that LBUP with
in Fig. 1. n = 1 performs similar to PRECISE at a large sample regime,
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Fig. 3.
Figure 2 for the details.

and a clear improvement of LBUP with n = 2,3 over them.
Note that LBUP with n = 2,3 demonstrate even tighter
confidence sequences compared to the PRECiSE algorithms.

Finally, we remark that the hybrid method (labeled with
HybridUP) can achieve both advantages of UP and LBUP,
i.e., good small-sample behavior and linear time complexity,
as advocated; see the second rows of (b) and (c) in Figs. 2

Examples of confidence sequences with respect to i.i.d. Bern(0.25), Beta(1, 3), and Beta(10, 30) processes at level 0.95. See the caption of

and 3. The last column presents the elapsed time of each
algorithm. We remark that, in our experiments, CB, HR,
LBUP, and HybridUP methods demonstrated O(t~°-®) time
complexity, PRECiSE-A-C096 took O(t~*?), while UP and
PRECiISE-C096 algorithms took O(t~!®) complexity; here,
the slopes of the lines correspond to the exponents in the log-
log plot.
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VII. CONCLUDING REMARKS

In this paper, we established the properties of a class of
universal-gambling-based algorithms for constructing confi-
dence sequences, and also proposed a new algorithm which
closely emulates the performance of the universal-portfolio-
based method, with less time complexity. Our argument is
based on interpreting the existing gambling formalism as a
(continuous) two-horse race. We believe that this perspective
is conceptually simpler and more intuitive, and thus allows the
research community to translate and connect the results from
information theory more easily.

One caveat in our experiments is that, as shown in the last
columns of Figs. 2 and 3, the UP method takes less time
up to about lengths 10° in the current implementation, even
though the LBUP and HybridUP methods incurs only linear
complexity in principle. (Note also that the elapsed time for UP
and PRECISE are comparable.) The computational bottleneck
is in the numerical integration to compute the wealth lower
bound in Eq. (24), as noted in Remark 5. We expect that a
specially designed numerical method for the specific integral
of our interest may reduce the time complexity and lead to a
faster-than-UP implementation.

An intriguing question is whether one can generalize the
argument of this paper to construct a confidence sequence for
high-dimensional random vectors. We leave this as a future
research direction.

APPENDIX A
TECHNICAL LEMMAS

A. Convexity

Lemma 4: The function m — m~*(1 — m) (=) is
log-convex for any ¢ > 1 and any z € [0, t].

Proof: Both m +— —logm and m — —log(1 — m) are
convex, so is their convex combination. O
Lemma 5: 1If f and g are log-convex, then so is f + g.

Proof: Let f,g: X — R+, and pick any z,y € X. For
any A € (0,1), we have

(f(z) +g@)(f(y) +g(y) ™
S @ W) + gl g(y)
2 F (1= \y) + g+ (1 Ay).

Here, (a) follows from Holder’s inequality and (b) follows
from the log-convexity of f and g. d

B. A New Lower Bound on a Logarithmic Function

We note that Fan et al. [6] used the following lemma as a
proof technique for its Lemma 4.1.

Lemma 6 ([6, eq. 4.10]): Define f(t) £ ©20E0=L for
t> —1,t # 0 and f(0) & —1. Then, t ~— f(t) is continuous
and strictly increasing over (—1, 00).

The following lemma is its higher-order generalization,
which subsumes the above lemma as a special case for £ = 2.
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Lemma 7: For an integer ¢ > 1, if we define
-1 —t)k
log(1+1¢) — Y=y -7
(=t)*
7

—1 if t =0,

ift > —1and ¢t #0,
fult) £ #

then ¢ — f¢(t) is continuous and strictly increasing over
(=1, 00).

Before we prove this lemma, we first compute the derivative
of the function ¢ — f,(¢).

Lemma 8: For any integer ¢ > 1,

fitt) =~ (20 + ).

Proof: From the definition, we can write

-1

o k—t
feét) 1 gi(_lt; t) +;(_1)Z+ktk.

Hence, as derived in Table VII, we can compute its derivative

TAO N S 710
1 t(1+1) t

which proves the claim. In the derivation, (a) follows from

N e e ) e B
S gporns L L0700 ey

k=1
O
Proof of Lemma 7: The continuity readily follows from
applying L'Hbpital’s rule, since
it
. T I+t _
b fet) = Jimy <= =l =9
From Lemma 8, it is clear that proving the monotonicity is
equivalent to showing that gy(t) < 0 for ¢ < 0 and even {’s
and g,(t) > 0 otherwise, where we define

ge(t) =& —t* (fz(t) + %—t)

Note that it is easy to show that

/! té
t=— .
Now, gy(t) > 0 for ¢ < 0 and even n’s, and thus g,(t) <
ge(0) = 0. For t > 0, gy(t) > 0 and thus g,(t) > g¢(0) =0
For t < 0 and odd n’s, gy(t) < 0 and thus g,(t) > g¢(0) = 0.
This concludes the proof. ]

APPENDIX B
DEFERRED PROOFS

A. Proof of Theorem 2
Proof: Let by: M=t — Ak be any betting strategy
such that

1 \Ijt(Xt)|x —o0.e,;
b t—1\\ . > t—05€j
( t(X ))] = 0j \I/tfl(xtil)

for every t > 1, every j € [K], and any x!~! € M!~L
Note that, by the assumption (Al), there always exists such
a betting strategy. We prove by induction. Assume that

(32)
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TABLE VII
DERIVATION OF THE DERIVATIVE OF % IN LEMMA 9
JHO 1 log(1+1) <=, otk tht-1
= -1 _
[ S G W S s 2 kz::l( k=0
£—1
(a) 1 L k1 th 1
= log(1 -1) z
i+ T o {rog1+1 +,§1( T +t( : (—t)e)
_ 1 fe®)
t(1+1) t
Wealth; 1 (x'~1) > WealthoW¥;_;(x'~!) (induction hypoth- C. Proof of Lemma 1
esis). Then, consider Proof: Note that, from Eq. (20), we can write
Wealth; (@) ¢
> (by,x) Wy (x'71) b k(1 —pytk Y (k)
Wealthy — ’ Wealth; (ZU P = Zb W
K Be' 1= [ — (1 —7i)
(b) Ty .
> Z o, Wi (x") |xi=oye; Hence, to conclude the des1red mequallty, it suffices to show
j=1 " that the function b — Wealth?(y*; u = ) is maximized at
() =
2w, (x) b = Ju, since

Here, (a) follows from the induction hypothesis, (b) follows
from Eq. (32), and (c) follows from (A2).
For the converse, first note that

\Ijt (xtflxt)

(be,x) = T, ()

(33)

for any x; € M by the definition of the multiplicative game.
Then, we have

Z] 1 0; \I/t( )|Xf,=ojej
\Ilt_l(xt—l)

G|
=> —(b,05e;) = (b, 1) =1,

j=1"7

which is the condition in (Al) with equality. To verify that
(A2) holds, consider

ﬁ \Pt<xt)‘xt20j9j

K
Ltj t—1
\I’t |x e \I/t—l(x ) T (wt—1)
; t=0;e; ; 0; Wy_i(xt1)
K
Do (xS 2 by, 05e;)
- Oj (i AV
Jj=1
= Uy1(x" )by, x) = Uy (x").

Here, (d) follows from Eq. (33). This concludes the proof. [l

B. Proof of Corollary 3

Proof: First, we can
oSyt ) = §oas d(3
we have d(p | ¢) > 2(p — q)?
readily follows that

rewrite the equation
I ) = g¢:(S¢;0). Since
by Pinsker’s inequality, it

S (S46) S \/ (S4;6)
low . Pt gt(Ot; t gt )
(1 (01,7 i) (S [20500) S, forlSid)y
and the desired inequality follows from Theorem 4. (]

; ! )iyt(k)

Wealth!="* (y
1 _
Ht

t
= H(yz +
i=1

Since b+ b¥(1 — b)!~* is log-concave (Lemma 4) and a sum
of any log-concave functions i 1s also log concave (Lemma 5),
50 is the function b — Wealth? HTS a0 Toa, u )- Hence, we only
need to show that the derivative of the function with respect
to b at b = fi; is zero. Indeed, we have

2 Wealth? ( L1 )’
ob fe 1 — g/ lo=n,
_ ZZ:O ky' (k) _ Zk:o(t — k)y' (k) -0
Hae 1— iy ’
by Lemma 9 stated below. ]

Lemma 9: For any y* € R? and 0 < k < t, define

Z Hy 1_yzlzi

zte{0,1}t:k(2t)=ki=1

y' (k) =
as in Eq. (17). Then, we have ZZ:O yt(k) =t and
¢ ¢
Zkyt(k) = Zyz
k=0 i=1

Proof: Let q(y) & doi<ir<.. <ip<t Yir - - Yip for 0 <
¢ < t. Then, from the recursive equation Eq. (18), it is easy
to show that

i Hk( > q(y").

L=k
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With this expression, we then have

5
<
o
—
=N
N
I
-
-
B
|
—
N2
~
+
>
N
TS
NG
R
—~
<
o
N

k=0 k=0 {=k
t 4 Y,
= (Dfq") ) (—-1)*k
2 qe(y kz:% (k)
t L
(a) l t k g - ]_
=) (=1)%q(y") p (-1)
2 qe\y ]; <k: . 1>
=qy)= Zyz

which is the desired relation. Here, (a) follows from the
identity that 37, (~1)7 () = 0 for any n > 1. O

D. Proof of Lemma 2

Proof: We first note that we only need to show the first
case where b € [m, 1) and y > 0, since the second case follows
by plugging in b «— 1 —b, m «— 1 —m, y < 1 — y into the
first inequality. Now, by Lemma 7, we have

log(1+ )
2n—1 J,'k J,‘2n 2n—1 Jﬁk
k1T T _ \k+1To
> Y (s o (log(1+:co) 3 (-1 k)
k=1 k=1
2n—1 [ z \2n k k
—X —\—X 2n
= (xo) ( Z) (==) +(£) log(1 + )
k=1 To
for any x > 29 > —1. Let g,,(b,y) = bL + (1 — b)ll_;;’1 —
1. Then, since m < b < 1, we have =2 < 1 < L and
m—>b

thus gm(bv y) > gm(bv 0) = % -1

=1
inequality follows by setting = < ¢, (b,vy), Zo < gm(b,0),
and observing that

() = G = ()

1—y

1—-m

and

~gun(by) =1-b2 — (1-b)

APPENDIX C
KT STRATEGY FOR CONTINUOUS TWO-HORSE RACE

Consider a gambling with odds vector x; = [01¢;,00(1 —
¢)] for ¢ € [0,1] given 01,00 > 0. Note that the following
statement is stated in parallel to Theorem 2.

Theorem 8: Let (v:: [0,t — 1] — Ry) be a sequence
of nonnegative potential functions that satisfies the following
condition:

(A1’) (consistency) For any 0 <z <t —1,

i1 (x) > i1/%(95 +1)+ i%(x)-
01 0o

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 10, OCTOBER 2024

(A2’) (convexity) For any 0 <z <t —1,
¢ = Yy(x+¢p)

is convex.
For each t > 1, define

iwt(m +1)

b(z) & . 34)
R T T
Then, the betting strategy bt(Zf;i ¢;) satisfies
t
Wealth; > Wealthot, (Z E)
i=1
Proof: We prove by induction. Assume that
Wealth;_1 > Wea|thowt,1($t,1),
where we denote x;_1 2 Zf;i ¢;. Then, we have
Wealth;
Wealth
~ ~ Wealth,_
= (Olctbt + 00(1 — Ct)(l — bt))W‘t;Ol
t—1
> (onby + o0(1 = &)(1 = b)) (D)
i=1
~ ~ Te—1+1 Ty
= (Olctbt+00(1_Ct)(1_bt))<wt( tol ) +wt(0t 1)>
1 0

= ath(zi—1 + 1) + (1 — )t (-1)
> Pp(wi—1 + &) = Pi(w1).
This concludes the proof by induction. (|
Corollary 6: Recall the mixture potential defined in
Eq. (10):
Blz+it—a+13)
B(3,3)
Then, the wealth of the betting strategy
t—1 t—1

b(@1) = [bt(Za), 1- bt( E)}

=1 i=

bi(x;01,00) 2 00"

—

with
1 1
o2 1o )
for x = 21 € [0,¢ — 1], is lower bounded by

t—1
Wealthofzt (Z Ci; 01, 02) .
i=1
Proof: 1Tt is easy to check that the potential satisfies both
conditions (A1) and (A2’). Indeed, (A1’) holds with equality,
and (A2’) follows as a corollary by the logarithmic convexity
of the mapping = — v,(z) over [0, t]. Therefore, the induced
betting strategy defined in Eq. (34) achieves the wealth at
least the coin betting potential );(x;). Here, note that, for
any 01,09 > 0,

by () oz +1) 1( +1)
xT) = = —\T —_
' L@+ + L) 1\ 2
for © = 41 € [0,¢ — 1], which is equivalent to the KT
strategy for the standard even-odds case 0; = og. Invoking
Theorem 8 concludes the proof. (]
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