Efficient Context-based Algorithms for Sequential Data

Jongha (Jon) Ryu

Department of ECE University of California San Diego

June 28, 2018

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

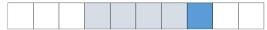
Jongha Ryu (UCSD ECE) June 28, 2018

2/16

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- ► Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

2/16

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context



- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- ► Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

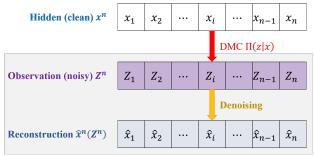
- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- ► Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

- ► Sequential data: text, image, genome sequence, stock prices, ...
- ► Tasks: estimation, denoising, classification, compression, prediction, ...
- ► Context-based algorithms (a.k.a. sliding window algorithms): make a decision based on context

- ► Common two-stage approach
 - 1. Learn conditional distributions from data
 - 2. Take Bayes optimal actions
- Quick-and-clean divide-and-conquer approach
 - 1. Decompose a complex problem into disjoint memoryless problems
 - 2. Plug-in optimal strategy for each subproblem
- Sparse context problem
 - ► To capture a higher order dependence, need large contexts
 - ▶ But only limited # of samples → poor performance!
- Q: How can we resolve the sparse context problem?

Problem Setting: Discrete Denoising

▶ Discrete alphabets $\mathcal{X}, \mathcal{Z}, \hat{\mathcal{X}}$



- **Nown** DMC $\Pi(z|x)$ with inverse channel $\Pi^{\dagger}(x|z)$
- ▶ Loss function $\Lambda: \mathcal{X} \times \hat{\mathcal{X}} \to [0, \infty)$
- ▶ **Goal**: Based on noisy Z^n , reconstruct a clean $\hat{x}^n(Z^n)$ which minimizes

$$\sum_{i=1}^n \Lambda(X_i, \hat{x}_i(Z^n))$$

Jongha Ryu (UCSD ECE) June 28, 2018 3/16

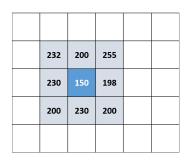
Problem Setting: Context Model

► Concretely, let's use balanced contexts of size *k* (hyperparameter)

▶ For 1D data, $C_i \triangleq (Z_{i-k}^{i-1}, Z_{i+1}^{i+k}) \in \mathcal{C} \triangleq \mathcal{C}^{(k)} \cong \mathcal{Z}^{2k}$

А	G	А	С	т	С	G	
	•	'`			"	"	

For 2D data



▶ In general, any valid context model (hyperparameter) would work

Traditional Approach (1): DUDE

- ▶ Discrete Universal DEnoiser [Weissman et al., 2005]
- ▶ **DUDE** runs in *two passes*

$$Z^n \xrightarrow{\text{distribution} \atop \text{distribution} \atop \text{learning}} \hat{p}_{\text{emp}}(z|\mathbf{c}) \xrightarrow[\text{Bayes rule,} \\ \hat{p}_{\text{emp}}(z|\mathbf{c}) \xrightarrow[\text{channel inversion}]{} \hat{p}(x|\mathbf{c},z) \xrightarrow[\text{Bayes action}]{} \hat{x}(\mathbf{c},z)$$

1. Find the conditional empirical distribution

$$\hat{\boldsymbol{\rho}}_{\mathrm{emp}}(\boldsymbol{z}|\mathbf{c}) \triangleq \frac{|\{j \colon \mathbf{c}_j = \mathbf{c}, z_j = \boldsymbol{z}\}|}{|\{j \colon \mathbf{c}_j = \mathbf{c}\}|}$$

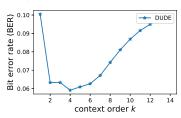
2. Find the Bayes optimal denoiser under $\hat{p}(x|\mathbf{c},z)$

$$\hat{\boldsymbol{\rho}}(\boldsymbol{x}|\boldsymbol{c},\boldsymbol{z}) = \frac{\Pi(\boldsymbol{z}|\boldsymbol{x})\hat{\boldsymbol{\rho}}(\boldsymbol{x}|\boldsymbol{c})}{\hat{\boldsymbol{\rho}}_{\mathrm{emp}}(\boldsymbol{z}|\boldsymbol{c})} = \frac{\Pi(\boldsymbol{z}|\boldsymbol{x})}{\hat{\boldsymbol{\rho}}_{\mathrm{emp}}(\boldsymbol{z}|\boldsymbol{c})} \sum_{\boldsymbol{z}'} \Pi^{\dagger}(\boldsymbol{x}|\boldsymbol{z}')\hat{\boldsymbol{\rho}}_{\mathrm{emp}}(\boldsymbol{z}'|\boldsymbol{c})$$

Traditional Approach (1): DUDE

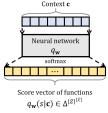
- Discrete Universal DEnoiser [Weissman et al., 2005]
- Low complexity, universality
 - **Universality**: for any x^n , DUDE asymptotically attains the performance of the best sliding window denoiser of the same order
- Sparse context problem

 - ▶ For grayscale images, $|\mathcal{X}| = |\mathcal{Z}| = 256$ ▶ Even for k = 3, $|\mathcal{C}^{(k)}| = |\mathcal{Z}|^{2k} = 256^6 = 2^{48}$
 - Example
 - Source: binary symmetric 1st order Markov sequence
 - ▶ Channel: BSC(p) with p = 0.1



Traditional Approach (2): Neural DUDE

- ▶ Neural DUDE [Moon et al., 2016]
- Introduces a neural network
 - ightharpoonup Train a neural network $q_{\mathbf{w}}: \mathcal{C} o \Delta^{|\mathcal{S}|}$
 - where $S := \{s : \mathcal{Z} \to \hat{\mathcal{X}}\}$, a set of all single symbol denoisers



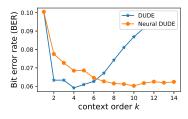
 \triangleright After training, for each context c, use

$$s^*(\mathbf{c}) = \operatorname*{arg\,max}_{s \in \mathcal{S}} q_{\mathbf{w}}(s|\mathbf{c})$$

► Training data generated based on an unbiased estimator of loss function

Traditional Approach (2): Neural DUDE

- ▶ Neural DUDE [Moon et al., 2016]
- Outperforms DUDE in practice!



- Huge output layer of size $|\mathcal{Z}|^{|\hat{\mathcal{X}}|}$
 - For $|\mathcal{X}| = |\mathcal{Z}| = |\hat{\mathcal{X}}| = 10$, we have $|\mathcal{Z}|^{|\hat{\mathcal{X}}|} = 10^{10}$

Proposed Method: CUDE

- ► Context aggregated Universal DEnoiser [Ryu and Kim, 2018]
- ► CUDE also runs in *two passes*

$$Z^{n} \xrightarrow{\text{NEURAL NET} \atop \text{distribution} \atop \text{learning}} \hat{p}_{\mathbf{w}}(z|\mathbf{c}) \xrightarrow{\text{Bayes rule,} \atop \text{channel inversion}} \hat{p}_{\mathbf{w}}(x|\mathbf{c},z) \xrightarrow{\text{Bayes} \atop \text{action}} \hat{x}_{\mathbf{w}}(\mathbf{c},z)$$

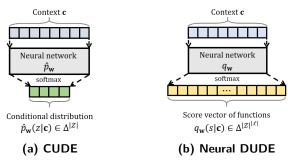
1. Train a neural network $\mathbf{c} \mapsto \hat{p}_{\mathbf{w}}(\mathbf{z}|\mathbf{c})$

$$\begin{split} \hat{\mathbf{w}} &= \operatorname*{arg\,min}_{\mathbf{w} \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \ln \frac{1}{\hat{p}_{\mathbf{w}}(z_{i} | \mathbf{c}_{i})} \\ &= \operatorname*{arg\,min}_{\mathbf{w} \in \mathcal{W}} \sum_{\mathbf{c}} \hat{p}_{\mathrm{emp}}(\mathbf{c}) D(\hat{p}_{\mathrm{emp}}(z | \mathbf{c}) || \hat{p}_{\mathbf{w}}(z | \mathbf{c})) \end{split}$$

2. Find the Bayes optimal denoiser under $\hat{p}_{\mathbf{w}}(x|\mathbf{c},z)$

Proposed Method: CUDE

- ► Context aggregated Universal DEnoiser [Ryu and Kim, 2018]
- Outperforms DUDE and Neural DUDE in practice!



- ► Simple output layer can manage large alphabets
- ▶ Intuition: context aggregation via neural nets
 - 1. $\mathbf{c} \mapsto \hat{p}_{\mathbf{w}}(\mathbf{z}|\mathbf{c})$ is a continuous mapping
 - 2. the neural net has finite capacity

Jongha Ryu (UCSD ECE) June 28, 2018

10 / 16

CUDE: Experiment with Quaternary Images

Noise	Algorithms	Barbara	Boat	Cameraman	Lena
QSC (10%)	DUDE Neural DUDE CUDE	20.5 (3) 20.7 (26) 21.5 (36)	22.0 (2) 21.9 (5) 22.6 (11)	24.4 (2) 23.9 (3) 25.2 (10)	22.4 (2) 21.9 (27) 23.1 (6)
QSC (30%)	DUDE Neural DUDE CUDE	14.7 (3) 16.3 (10) 16.5 (18)	16.3 (2) 17.8 (13) 18.2 (16)	16.7 (2) 18.7 (16) 19.1 (15)	15.7 (3) 17.6 (17) 17.9 (15)

Table: Comparison of denoising performance in PSNR(dB) for quaternary scaled images corrupted by QSC noise with $\delta=10\%,30\%$.

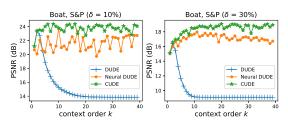
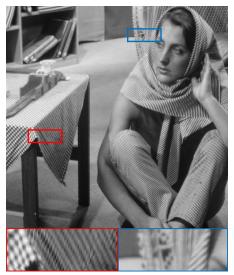
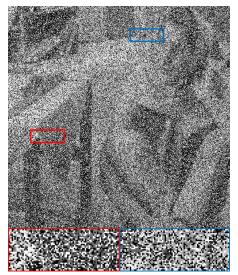


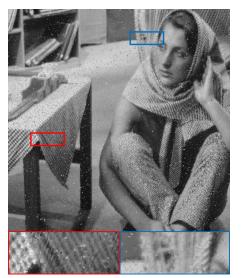
Fig.: PSNR plot for the quaternary boat image corrupted by S&P noise ($\delta=10\%,30\%$) with different context orders.



(a) Original



(b) Noisy (S&P(δ) noise, $\delta = 50\%$) 8.3dB

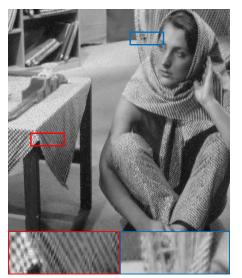


(c) Vanilla CUDE (k=1) 24.1dB



(d) IMSM prefiltered image 25.6dB

Jongha Ryu (UCSD ECE) June 28, 2018 12 / 16



(e) Iterated CUDE with prefiltering (k = 15) 29.9dB

Future Directions

- ► Unstructured noise such as Gaussian
- ► Performance analysis
 - When is CUDE better than DUDE?
 - ► Can we quantify the context aggregation effect by neural net?
- Extension to continuous alphabets
 - Conditional density estimation via neural network
- Extension to other tasks
 - ► (Offline) Compression, classification, ...
 - (Online) Prediction, filtering, portfolio selection, ...

[1] Jongha Ryu, Young-Han Kim, "Conditional Distribution Learning Using Neural Networks and Its Application to Universal Image Denoising", accepted to International Conference on Image Processing (ICIP), 2018.

References

Moon, T., Min, S., Lee, B., and Yoon, S. (2016).

Neural universal discrete denoiser.

In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, *Advances in Neural Information Processing Systems 29*, pages 4772–4780. Curran Associates, Inc.

Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., and Weinberger, M. J. (2005).

Universal discrete denoising: known channel.

IEEE Transactions on Information Theory, 51(1):5–28.

Any Questions?