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Goal: Demystifying EDL Methods

Unifying EDL Objectives: A New Taxonomy

 

 

How Can We Improve EDL?

Single prediction can be unreliable…
Background
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We wish to quantify confidence/uncertainty!
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• Bayesian methods: variational inference, MCMC, Monte Carlo Dropout, …
• Frequentist methods: jackknife, bootstrap, …
• Ensemble methods

However, these methods are computationally inefficient in general!

An alternative: Evidential Deep Learning (EDL)
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EDL aims to quantify uncertainty with a single neural network
• Various EDL objectives have been proposed from different motivations for 

different settings (i.e., prediction for discrete, continuous, count outcomes)
• Empirical successes shown for downstream tasks (e.g., OOD detection)

However, recent works reported suspicious behaviors (e.g., non-vanishing
epistemic uncertainty) + unifying theoretical understanding is lacking

pψ(π|x)

We answer to these questions in this paper:
Q1. What do EDL methods learn as uncertainty?    
Q2. Why are the EDL methods empirically successful? 
Q3. How can we make EDL methods more reliable? 
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Q. What’s the common principle behind these objectives?

EDL model
“fixed” 

uncertainty target

EDL aims to fit “fixed” uncertainty target!

in-distribution objective
with reverse KL div. what EDL objectives set as 

the “optimal” meta distribution

The Unifying View Demystifies EDL

EDL Methods ≈ EBM-based OOD detector

≈

Uncertainties learned by EDL exhibits spurious behaviors

Learned epistemic 
uncertainty is
non-vanishing 
as data size grows

Learned aleatoric 
uncertainty is
sensitive to 
regularization 
parameter

• This resemblance explains EDL methods’ empirical success on OOD detection

Other empirical pitfalls about EDL methods (see right column)
• EDL methods’ performance is inherently sensitive to model architecture
• EDL methods’ auxiliary techniques, such as density param., are not robust

Learned Uncertainties in EDL are Fragile
EDL methods may be sensitive to model architecture

EDL with “flow density model” may not perform well

Fundamental cause: Ignorance of model stochasticity
EDL methods assume no model randomness by setting
• Posterior   becomes degenerate
• The only benefit is computational efficiency
• EDL methods has to fit model to an artificial uncertainty targetpψ(π|x)

Use EDL to distill uncertainty from model stochasticity

• A new proposal: Bootstrap-Distill EDL
• Train multiple models with different random subsamples (bootstrap)
• A single network distills the model uncertainty via an EDL objective
• Bootstrap-Distill shows superior UQ performance!

OOD detection selective classification
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Classical approaches to estimate/induce aaaaaaapψ(π|x)

prior

in-distribution objective OOD objective

in-distribution objective OOD objective

p(ψ|D)← δ(ψ − ψ⋆)
p(π|x,D) !

∫
p(π|x,ψ)p(ψ|D)dψ
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Answers: A1. made-up target / A2. ∵ EDL ≈ EBM OOD detector / A3. bring back external stochasticity
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