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Unifying EDL Objectives: A New Taxonomy

Background

Single prediction can be unreliable...

EDL methods may be sensitive to model architecture
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» Bayesian methods: variational inference, MCMC, Monte Carlo Dropout, ... in-distribution objective
* Frequentist methods: jackknife, bootstrap, ... with reverse KL div.
* Ensemble methods

How Can We Improve EDL?

Fundamental cause: Ignorance of model stochasticity

However, these methods are computationally inefficient in general!

The Unifying View Demystifies EDL

Uncertainties learned by EDL exhibits spurious behaviors + Posterior p(m|z, D) = [ p(|z,)p(Y|D)di becomes degenerate
* The only benefit is computational efficiency

* EDL methods has to fit model p,, (7|2 ) to an artificial uncertainty target

An alternative: Evidential Deep Learning (EDL)
data

EDL methods assume no model randomness by setting p(y|D) < d(¢p — ¥™)
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