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Black-Box Prediction is Unreliable

• Neural-network predictors are highly accurate… 
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Black-Box Prediction is Unreliable
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• Neural-network predictors are highly accurate… 

• But often overconfident for out-of-distribution (OOD) data
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We Need Uncertainty Quantification!
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We Need Uncertainty Quantification!

Different ways of inducing 

• Bayesian methods: variational inference, MCMC, Monte Carlo Dropout, …
• Frequentist methods: jackknife, bootstrap, …

• Ensemble methods
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We Need Uncertainty Quantification!

Different ways of inducing 

• Bayesian methods: variational inference, MCMC, Monte Carlo Dropout, …
• Frequentist methods: jackknife, bootstrap, …

• Ensemble methods
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Computationally Inefficient!



Evidential Deep Learning (EDL)
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• Directly train a single neural network that outputs 

• Empirical successes for downstream tasks (e.g., OOD detection)
• Lack of theoretical understanding

• Recent works have reported spurious behaviors
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Demystifying EDL Methods

• Q1. What do EDL methods learn as uncertainty?

• Q2. Why are the EDL methods successful?

• Q3. How can we make EDL methods more reliable?



Unifying EDL Objectives: A New Taxonomy

What’s the common principle 
behind all these objectives?
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Explain Spurious Behaviors of Learned Uncertainties

Non-vanishing 
learned epistemic uncertainty

Hyperparameter sensitive 
learned aleatoric uncertainty



Explain Success of EDL Methods

• EDL methods can be better understood as EBM-based OOD detector

in-distribution objective OOD objective

EDL model
“fixed” 
uncertainty target

≈
in-distribution objective OOD objective



How to Improve EDL?

• All the issues of EDL arise from the ignorance of model stochasticity
• Conjecture: Incorporating external stochasticity is the key for meaningful UQ
  and EDL should be used for “distillation” for fast inference
• Show distilling randomness in Bootstrap can achieve SOTA performance

OOD detection selective classification
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