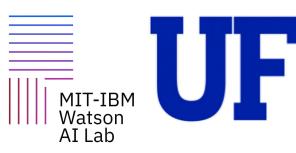
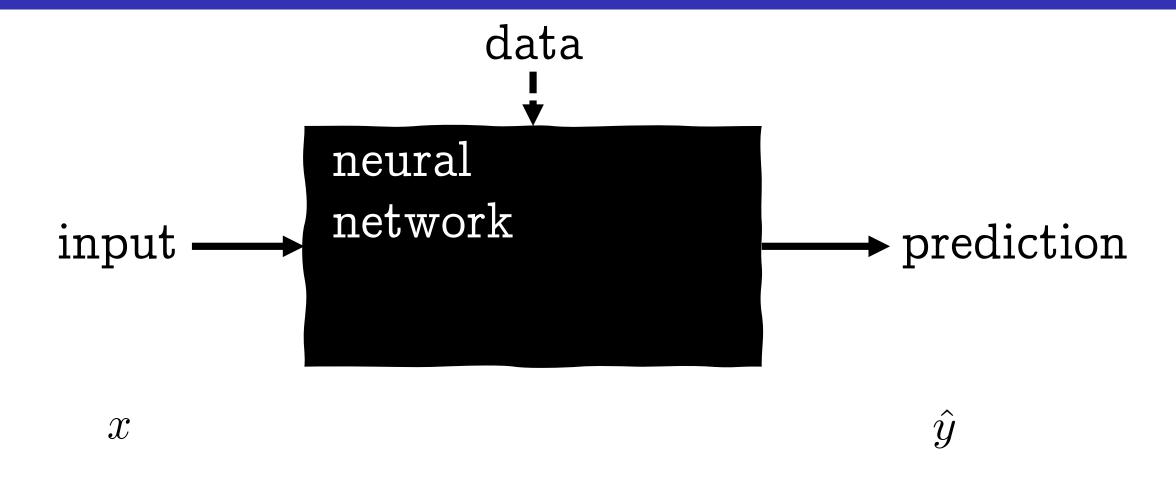
Are Uncertainty Capabilities of Evidential Deep Learning a Mirage?

Maohao Shen^{1*}, J. Jon Ryu^{1*}, Soumya Ghosh², Yuheng Bu³, Prasanna Sattigeri², Subhro Das², Gregory W. Wornell¹

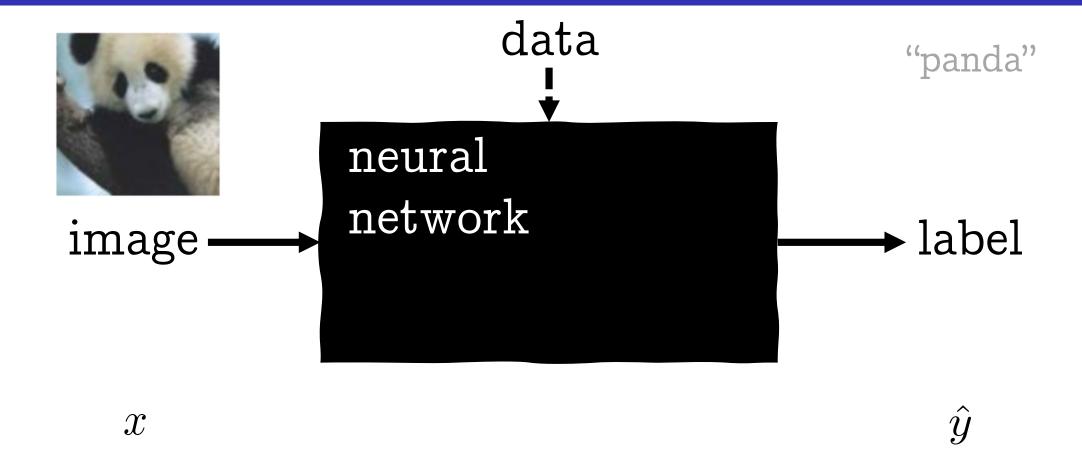
 $^{1}\mathsf{MIT}$

²MIT-IBM Watson AI Lab, IBM Research ³University of Florida

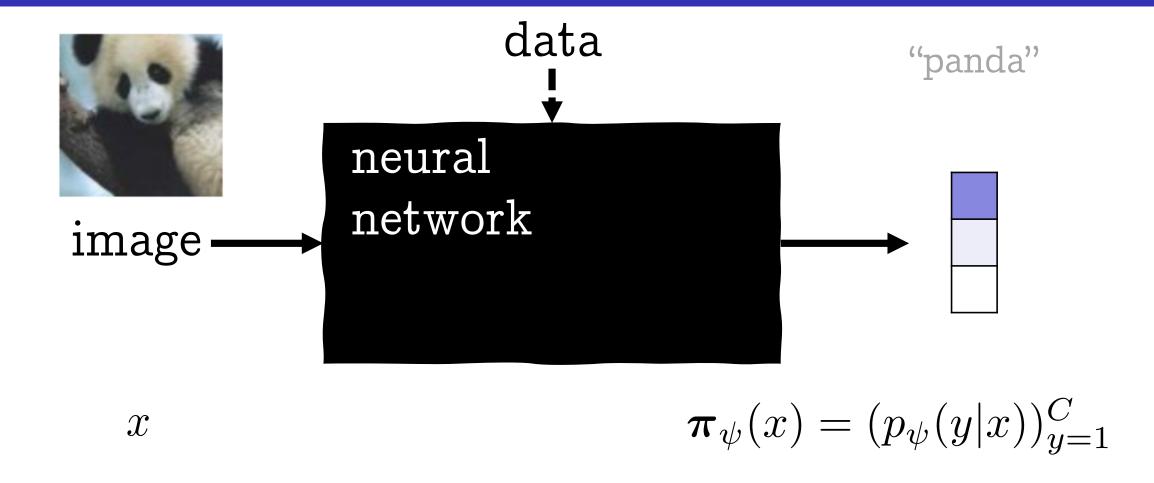




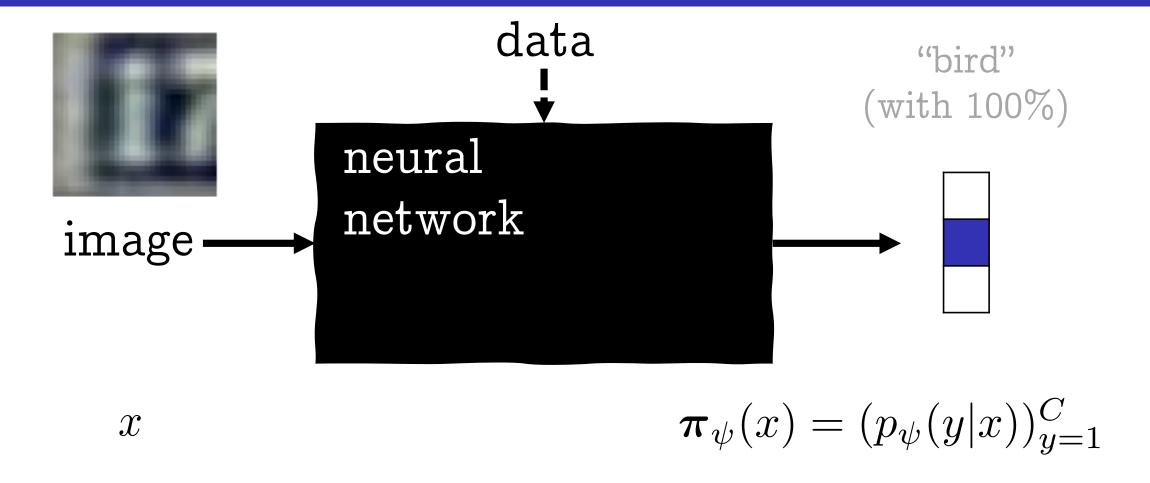
Neural-network predictors are highly accurate...



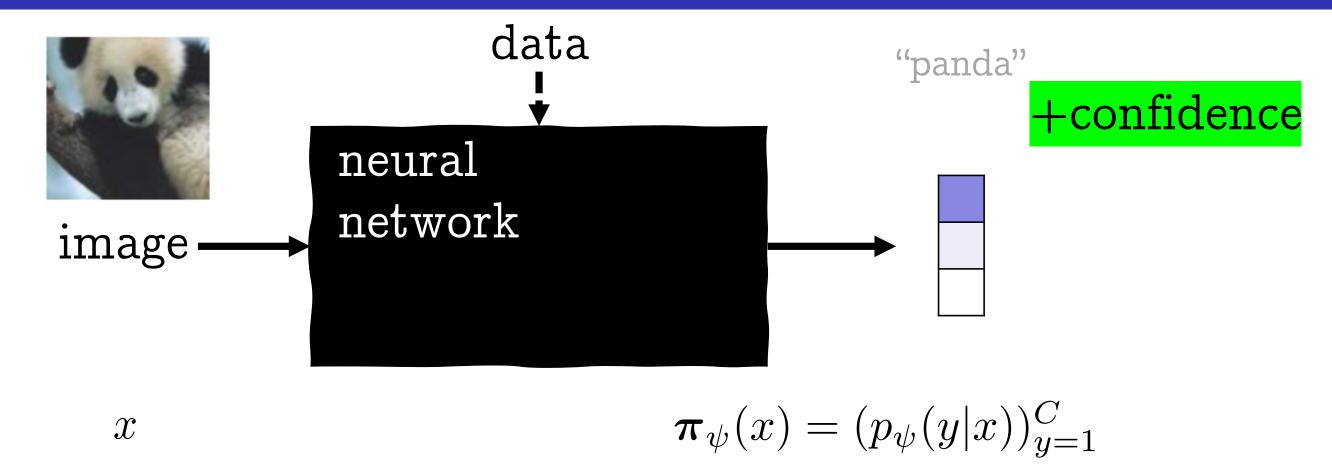
Neural-network predictors are highly accurate...

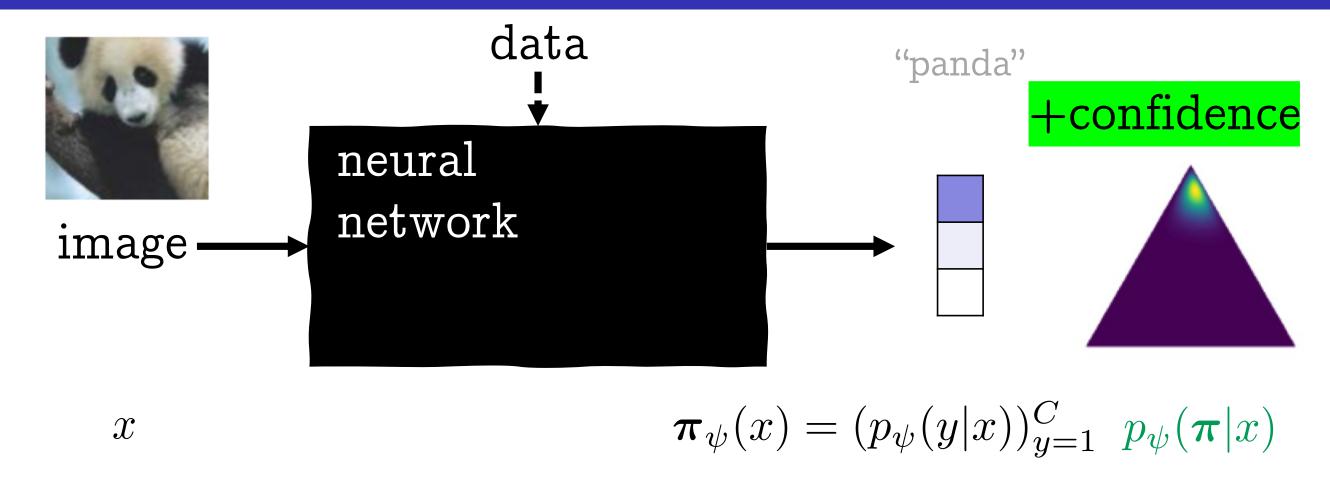


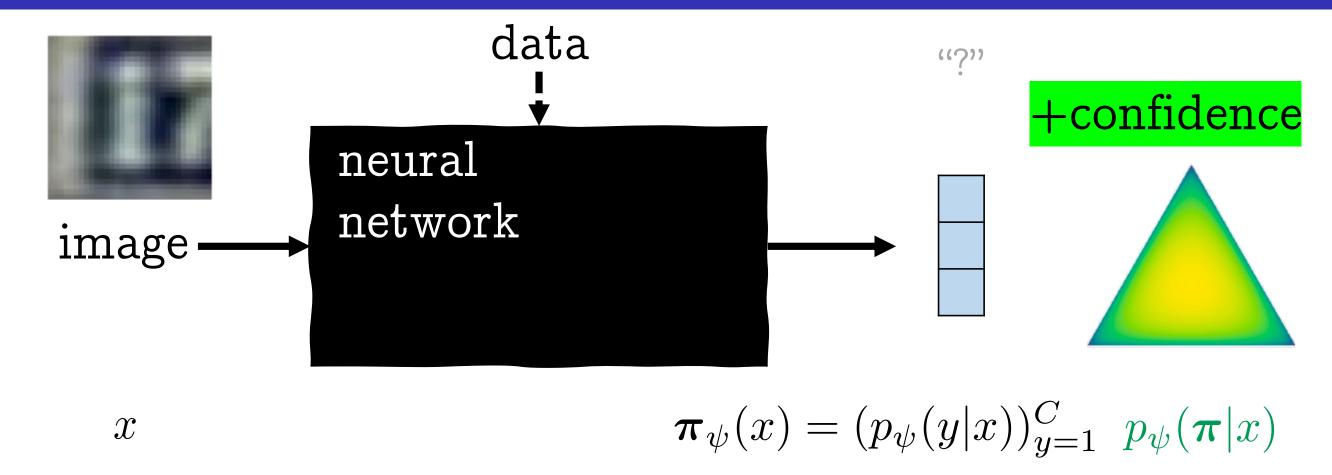
Neural-network predictors are highly accurate...

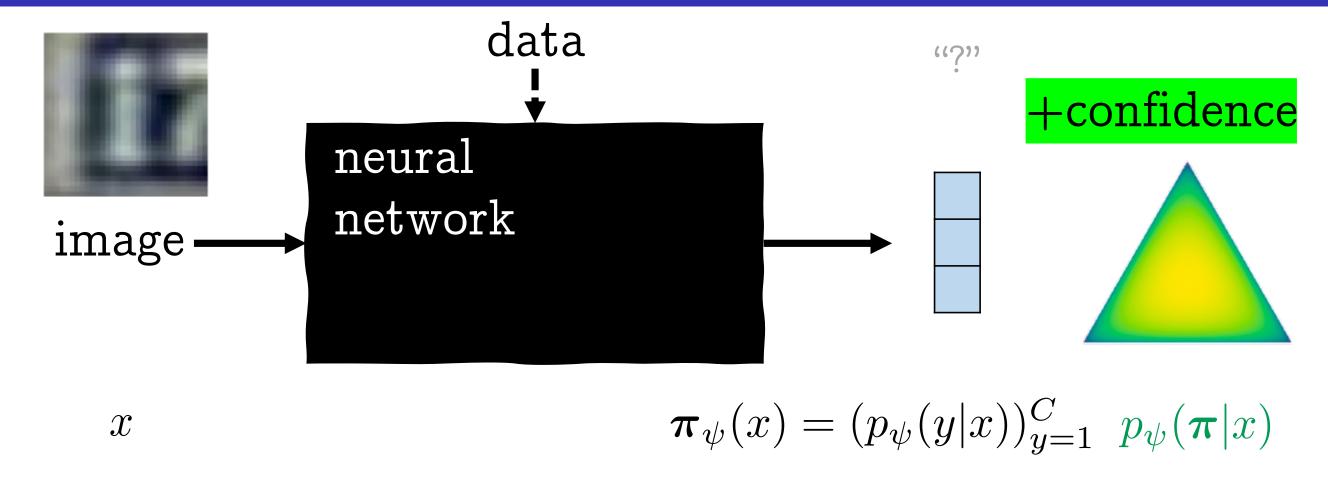


- Neural-network predictors are highly accurate...
- But often overconfident for out-of-distribution (OOD) data



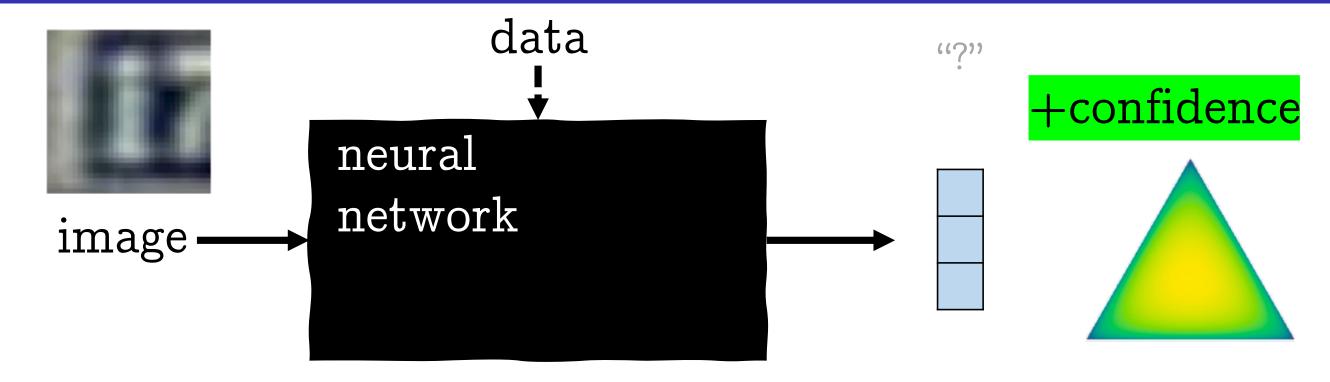






Different ways of inducing $p_{\psi}(\boldsymbol{\pi}|x)$

- Bayesian methods: variational inference, MCMC, Monte Carlo Dropout, ...
- Frequentist methods: jackknife, bootstrap, ...
- Ensemble methods

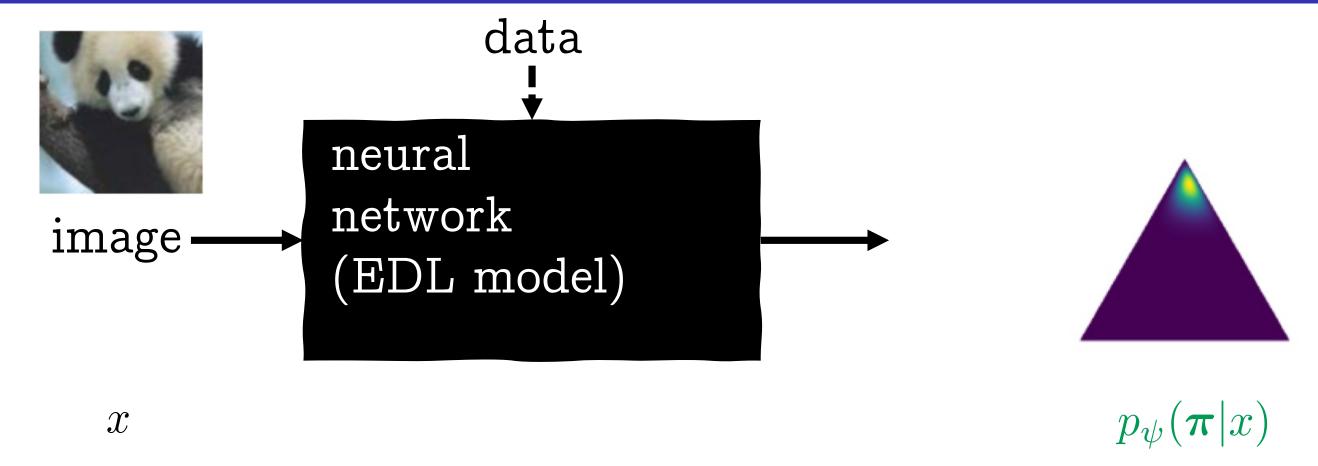


$$\pi_{\psi}(x) = (p_{\psi}(y|x))_{y=1}^{C} p_{\psi}(\pi|x)$$

Different ways of inducing $p_{\psi}(\pi|x)$

- Bayesian rethods: variational inference, MCMC, Monte Carlo Dropout, ... Computationally Inefficient!
- Frequentist methods: jackknife, bootstrap,
- Ensemble methods

Evidential Deep Learning (EDL)



- Directly train a single neural network that outputs $p_{\psi}(\boldsymbol{\pi}|x)$
- Empirical successes for downstream tasks (e.g., OOD detection)
- Lack of theoretical understanding
- Recent works have reported spurious behaviors

Demystifying EDL Methods

- Q1. What do EDL methods learn as uncertainty?
- Q2. Why are the EDL methods successful?
- Q3. How can we make EDL methods more reliable?

Unifying EDL Objectives: A New Taxonomy

```
Method (name of loss)

FPriorNet (F-KL loss) [7]
RPriorNet (R-KL loss) [8]
EDL (MSE loss) [10]
Belief Matching (VI loss) [12, 13]
PostNet (UCE loss) [15]
NatPN (UCE loss) [20]
```

What's the common principle behind all these objectives?

Unifying EDL Objectives: A New Taxonomy

```
Method (name of loss)
```

FPriorNet (F-KL loss) [7]

RPriorNet (R-KL loss) [8]

EDL (MSE loss) [10]

Belief Matching (VI loss) [12, 13]

PostNet (UCE loss) [15]

NatPN (UCE loss) [20]

What's the common principle behind all these objectives?

$$\mathcal{L}(\psi) := \mathbb{E}_{p(x,y)}[D(\boxed{p^{(\nu)}(\pi|y)}, \boxed{p_{\psi}(\pi|x)}] + \gamma_{\text{ood}}\mathbb{E}_{p_{\text{ood}}(x)}[D(p(\pi), \boxed{p_{\psi}(\pi|x)})]$$
 "fixed" uncertainty target EDL model in-distribution objective OOD objective

Unifying EDL Objectives: A New Taxonomy

Method (name of loss)	likelihood	$D(\cdot,\cdot)$	prior $oldsymbol{lpha}_0$	γ_{ood}	$oldsymbol{lpha}_{\psi}(x)$ parameterization
FPriorNet (F-KL loss) [7]	categorical	fwd. KL	$= \mathbb{1}_C$	> 0	direct
RPriorNet (R-KL loss) [8]	categorical	rev. KL	$= 1\!\!1_C$	> 0	direct
EDL (MSE loss) [10]	Gaussian	rev. KL	$= 1\!\!1_C$	=0	direct
Belief Matching (VI loss) [12, 13]	categorical	rev. KL	$\in \mathbb{R}_{>0}^C$	= 0	direct
PostNet (UCE loss) [15]	categorical	rev. KL	$=\mathbb{1}_C$	= 0	density w/ single flow
NatPN (UCE loss) [20]	categorical	rev. KL	$= \mathbb{1}_C$	=0	density w/ multiple flows

$$\mathcal{L}(\psi) := \mathbb{E}_{p(x,y)}[D(\boxed{p^{(\nu)}(\pmb{\pi}|y)}, \boxed{p_{\psi}(\pmb{\pi}|x)}] + \gamma_{\mathsf{ood}}\mathbb{E}_{p_{\mathsf{ood}}(x)}[D(p(\pmb{\pi}), \boxed{p_{\psi}(\pmb{\pi}|x)})]$$
 "fixed" uncertainty target EDL model

in-distribution objective

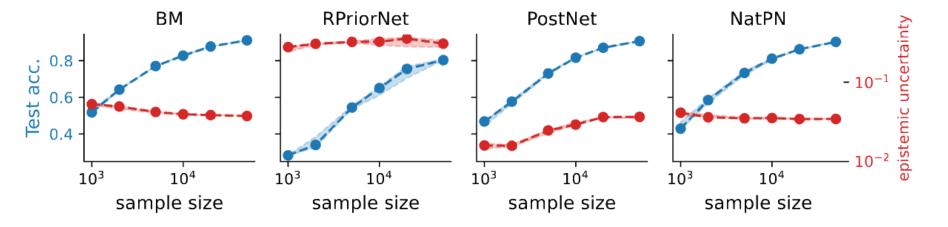
OOD objective

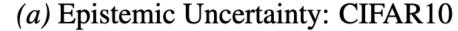
Explain Spurious Behaviors of Learned Uncertainties

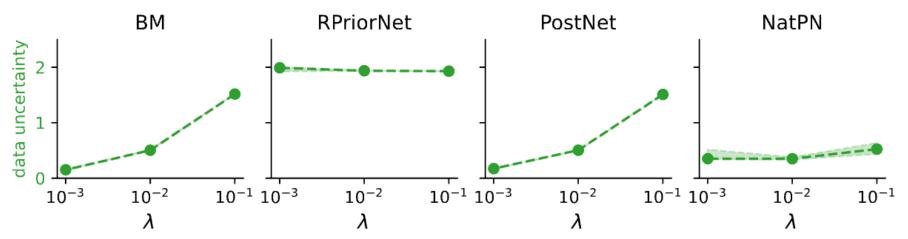
Non-vanishing

learned epistemic uncertainty

Hyperparameter sensitive learned aleatoric uncertainty







(b) Aleatoric Uncertainty: CIFAR10

Explain Success of EDL Methods

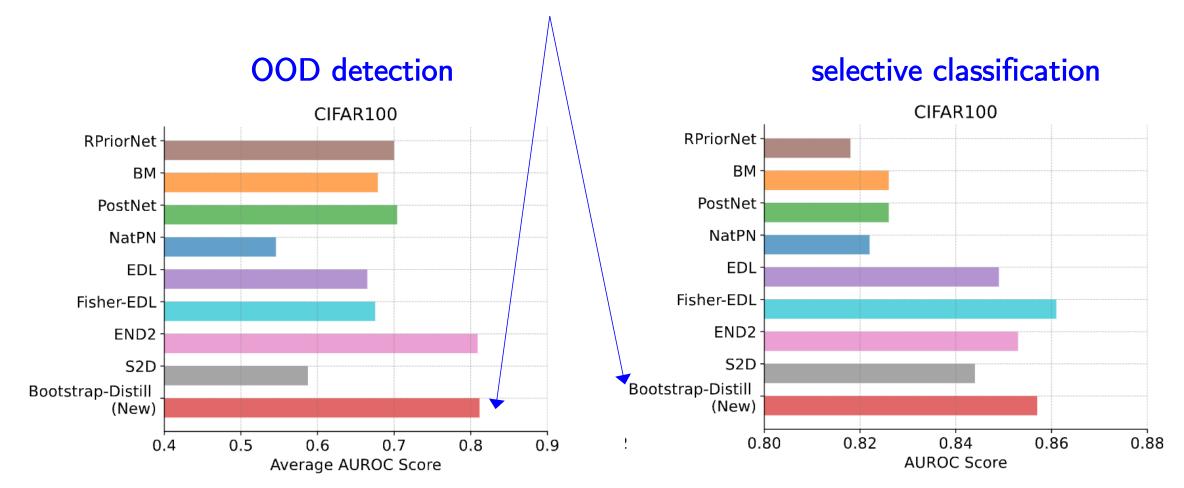
$$\mathcal{L}(\psi) := \mathbb{E}_{p(x,y)}[D(p^{(\nu)}(\boldsymbol{\pi}|y),p_{\psi}(\boldsymbol{\pi}|x))] + \gamma_{\mathrm{ood}}\mathbb{E}_{p_{\mathrm{ood}}(x)}[D(p(\boldsymbol{\pi}),p_{\psi}(\boldsymbol{\pi}|x))]$$
 in-distribution objective OOD objective

$$-\mathbb{E}_{p(x,y)}[\log p_{\psi}(y|x)] + \tau \big\{ \mathbb{E}_{p(x)}[\max(0,E_{\phi}(x)-m_{\mathsf{id}})^2] + \mathbb{E}_{p_{\mathsf{ood}}(x)}[\max(0,m_{\mathsf{ood}}-E_{\phi}(x))^2] \big\},$$
 in-distribution objective

EDL methods can be better understood as EBM-based OOD detector

How to Improve EDL?

- All the issues of EDL arise from the ignorance of model stochasticity
- Conjecture: Incorporating external stochasticity is the key for meaningful UQ and EDL should be used for "distillation" for fast inference
- Show distilling randomness in Bootstrap can achieve SOTA performance



Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage?

Maohao Shen¹*, J. Jon Ryu¹*, Soumya Ghosh²†, Yuheng Bu³, Prasanna Sattigeri², Subhro Das², Gregory W. Wornell¹

¹Department of EECS, MIT, Cambridge, MA 02139 ²MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA 02142 ³Department of ECE, University of Florida, Gainesville, FL 32611

{maohao,jongha,gww}@mit.edu, {ghoshoso,prasanna}@us.ibm.com, subhro.das@ibm.com, buyuheng@ufl.edu