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PROBLEM:

Assume Hilbert space V with norm || - ||
Ineachround t = 1,2, ...

- Learner picks action w; € V

- Receives a vector g, € V such that ||g|| < 1

- Gains reward (g;, w;)

Goal: maximize the cumulative reward Y.I_,(g,, w;)
The standard metric: regret with respect to the best static competitor in
hindsight

T T

Reg(u; gl) := Z(gt, u) — Z(gt,wt) forueV

Two issues

1. Learning rate tuning requires a priori knowledge on ||ul]
2. Static competitors are weak

v' Parameter-Free via Universal Coin Betting

= To attain optimal rates, naive approaches require ||ul|

= Q. Can we attain optimal regret w/o the need of tuning parameters?

» A. Orabona and Pal (2016) showed that a universal coin betting algorithm can
be converted to a near-optimal-regret parameter-free !

= Key tool: Fenchel duality
» Note: Other parameter-free algorithms exist

v with Side Information

« Static competitors {u:u € V} are weak
 Example: forg,—g, g, —g, ..., the best reward with u € V is zero
* In general, 3I_, g;,u;) can be large iff || X:f_1 8¢ || is large

* Q. Can we leverage a possible structure in (g;)>1?

 Our approach: Provided that we have access to a side information sequence
(h; € {1,1});>1 which may potentially capture a structure, develop a method
that adapts to side information!

Example: h; = sgn({g;_1, f)) (qQuantization with f € 1)

To capture a more complex structure, we consider:

Def (tree side information): Given a suffix tree T and an auxiliary sequence
Q= (w; € {1,1}) 51, the tree side information (h;);s1 is

h; = (the matching suffix of wt,, w.r.t.T) «1
 Example:
t o 1 2 3 4 5 6 7 .. 11
w, 1 1 1 1 1 1 1 1
he - 1 1 11 1 1 11 11 -
11
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PARAMETER-FREE

WITH SIDE INFORMATION VIA UNIVERSAL COIN BETTING

Information theory
Universal gambling strategy

/Unlversal coin bettlng\

/KT probability aSS|gnmen KT OLO algorithm

Parameter-free OLO

absolute wealth
lower bound Orabona & Pal (2016)

(“coin betting potential”)
& Fenchel duality

\ betting algorithm
State-wise Section 3.1 State-wise
KT probability KT OLO
Mixture Section 3.2 Mixture
probability OLO

Section 3.3

CTW
OLO

[ Context tree weighting

\ (CTW) probability

Idea: coin betting wealth lower bound can be translated into AND
In general, parameter-freeness incurs additional multiplicative logarithmic factors

CTW
(=state-wise KT+mixture)
+ beta processing

Building blocks
» To adapt to a single side information sequence: state-wise KT OLO
» To adapt to any one of multiple side information sequences: mixture OLO

Application: tree side information
» Goal: given (), adapt to any tree side information sequence of depth < D

= Approach: Take a mixture of state-wise KT OLOs for all tree side information sequences,

following CTW (Willems et al. 1995) for universal tree source compression

= Challenge: The mixture over all subtrees of depth < D involves O(ZZD) summands
= CTW OLO algorithm

— can adapt the beta processing algorithm (Willems et al. 2006) for CTW,;

- runs in 0(D) time complexity per step, with O(D) storage complexity

Parameter-free optimization algorithm
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EXPERIMENT

Online linear regression with absolute loss: x € R%,y € R

Et(Wt) = E(Qtayt) Ut = <Wtaxt>
Ol (Wy) = sgn((We, X¢) — Y¢) Xy

Two real-world temporal datasets
1. Beijing PM2.5 (air pollution dataset)
2. Metro Inter State Traffic Volume (traffic volume dataset)

Auxiliary sequence construction: for each dimension i € [d], apply canonical
binary quantizer Q. for each symbol (e; = the i-th standard vector)

Run algorithms with tree side information of depth D € {0,1,3,5,7,9,11}
Since we do not know which depth is best a priori, apply mixture (or addition)

BeijingPM2.5 MetrolnterstateTrafficVolume
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== 0OGD w/ Markov (best) ¥ Add. KTs w/ Markov
-@- DFEG w/ Markov (best) -gb- Mix. KTs w/ Markov
-V AdaNorm w/ Markov (best) $3- Add. CTWs
<

== KT w/ Markov (best) Mix. CTWs
- CTW (best)

« Observations

1. The performance of OGD, DFEG, AdaNorm with Markov side information get
worse as the side information depth increases

2. The best of CTWs over dimensions achieves incurs almost the lowest losses

3. The addition or mixture of CTWs over the dimensions attain the performance
of the best of optimally tuned OGDs, KTs, and CTWs
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