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Abstract

This paper studies a family of estimators based on
noise-contrastive estimation (NCE) for learning
unnormalized distributions. The main contribu-
tion of this work is to provide a unified perspec-
tive on various methods for learning unnormal-
ized distributions, which have been independently
proposed and studied in separate research com-
munities, through the lens of NCE. This unified
view offers new insights into existing estimators.
Specifically, for exponential families, we estab-
lish the finite-sample convergence rates of the
proposed estimators under a set of regularity as-
sumptions, most of which are new.

1. Introduction

Unnormalized distributions, also known as energy-based
models, arise in various applications, such as generative
modeling, density estimation, and reinforcement learning;
we refer an interested reader to a comprehensive overview
paper (Song & Kingma, 2021) and references therein. Such
distributions capture complex dependencies and provide
representational flexibility, making them attractive in fields
ranging from statistical physics to machine learning. De-
spite their widespread use, estimating parameters within
these models poses significant challenges due to the in-
tractability of their normalization constants.

In this paper, we consider the problem of parameter estima-
tion for unnormalized distributions, through the lens of the
noise-contrastive estimation (NCE) framework (Gutmann &
Hyvirinen, 2012). Our contributions are as follows:

1. As variants of the f-NCE (Pihlaja et al., 2010) (Sec. 1.2),
we study a family of NCE-based estimators, the a-
centered NCE (a-CentNCE; Sec. 2.1) and f-conditional
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NCE (f-CondNCE; Sec. 2.2). With this unifying view
on different estimators, we clarify previously unrecog-
nized and/or potentially misleading connections among
existing estimators proposed for learning unnormalized
distributions, as well as provide unified analysis.

2. Specifically, via the lens of a-CentNCE, we reveal that
several different estimators for learning unnormalized
distributions can be connected and unified, including
MLE (Fisher, 1922), MC-MLE (Geyer, 1994), and Glob-
alGISO (Shah et al., 2023) as special instances. A local
version of centered NCE estimators subsumes pseudo
likelihood (Besag, 1975) and interaction screening objec-
tives (ISO) (Vuffray et al., 2016; 2021; Ren et al., 2021;
Shah et al., 2021a), which were proposed for learning
exponential families corresponding to Markov random
fields (MRFs).

3. For f-CondNCE, we show that, in contrast to the original
claim in (Ceylan & Gutmann, 2018), the behavior of the
f-CondNCE estimator does not converge to the score
matching (SM) estimator (Hyvérinen, 2005) in a small
noise regime. In fact, we show that the variance of f-
CondNCE diverges in the vanishing noise regime, if the
number of conditional samples is not sufficiently large.

4. As a concrete consequence of such connections, we es-
tablish the finite-sample convergence guarantees of the
proposed estimators for learning bounded exponential
family distributions, by building upon the analysis of
GlobalGISO by (Shah et al., 2023). To the best of our
knowledge, such guarantees are the first of the type for
almost all the NCE estimators considered in this paper.

1.1. Related Work

While the celebrated maximum likelihood estimator (MLE),
advocated by Fisher (1922), is arguably the de facto stan-
dard for parameter estimation problems, it is not directly
applicable for high-dimensional unnormalized distributions
due to the computational intractability of calculating the nor-
malization constant. Several methods have been proposed
as alternatives, including MLE with Monte-Carlo approxi-
mation of partition function (MC-MLE) (Geyer, 1994; Riou-
Durand & Chopin, 2018; Jiang et al., 2023), score match-
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ing (Hyvérinen, 2005; 2007; Song et al., 2020; Liu et al.,
2022; Pabbaraju et al., 2023), NCE (Gutmann & Hyvirinen,
2012; Pihlaja et al., 2010; Gutmann & Hirayama, 2011; Cey-
lan & Gutmann, 2018; Uehara et al., 2018; Chehab et al.,
2022; 2023), contrastive divergence (Hinton, 2002), among
many other techniques. A comprehensive overview of these
methods can be found in (Song & Kingma, 2021).

For exponential families, there is a specialized literature,
with a focus on learning undirected graphical models such
as MRFs. In a pioneering work (Besag, 1975), Besag pro-
posed the so-called pseudo likelihood estimator, which can
be understood as a local counterpart of MLE. A recent and
representative line of recent work includes ISO, GISO, and
ISODUS, based on an estimation principle called interac-
tion screening (Vuffray et al., 2016; 2021; Ren et al., 2021;
Shah et al., 2021a). More broadly, for exponential family in
general, Shah et al. (2021b), and in a follow-up work with
refinement in (Shah et al., 2023), studied a variant of the
interaction screening objective for training a general expo-
nential family without a local structure, which we refer to as
GlobalGISO in this paper. We emphasize that these estima-
tors have been proposed and analyzed in several different
communities, and the literature lacks on a comprehensive
understanding how different estimators can be compared.
In this paper, our primary goal is to provide a unifying view
on these different principles for learning unnormalized dis-
tributions in a unified way via the NCE principle (Gutmann
& Hyvirinen, 2012; Pihlaja et al., 2010).

1.2. Preliminaries: f-Noise-Contrastive Estimation

We consider an unnormalized density model {¢g(z): 0 €
©} for a d-dimensional random vector = with support X’ C
R?, where § € RP is a parameter and © C RP is the
set of feasible parameters. Our goal is to find the best
6 € © so that ¢y () is closest possible to the data generating
distribution ¢q4(x). We consider the well-specified case,
where there exists 0* € O such that ¢y (x) o gq(z).

We start the investigation with an extension of the original
NCE (Gutmann & Hyvérinen, 2012), which we call f-NCE.
This family of estimators was first derived in (Pihlaja et al.,
2010) in a rather convoluted way. Here, we introduce them
as an instance of Bregman divergence minimization for
density ratio estimation (DRE) (Sugiyama et al., 2012),
in which way the consistency of the resulting estimator is

straightforward.

The idea of NCE is to train the model ¢y (), so that it
can be used to discriminate samples of the data distribution
gd(x) from samples of a noise (or reference) distribution
gn(z). A necessary condition for discrimination is that the
support of gy, i.e., supp(gn), subsumes the support of g4(x),

i.e., supp(qq). Hence, we define the (scaled) model density

ratio py(z) = f;n((?)

wish to fit this to the underlying density ratio

for a hyperparameter v > 0, and we

qd ((ﬂc))
vgn(x)*
differentiable function h: Z — R with Z C R*, we define

and denote the Bregman divergence as

For a

An(z,2') = h(z) — h(Z') — (Vh(Z),z — 2)

for z,z’ € Z, which is the approximation error of the first-
order Taylor approximation of h(z) at z’. For a given strictly
convex function f: R>g — R and a reference distribution
gn(z), we propose the f-NCE objective as in Eq. (1). The
intermediate expression in Eq. (1) is used as a conceptual
device to derive the final objective in Eq. (2). We define the
f-NCE estimator as a minimizer of the objective function:

05 (a4, qn) € arg min L (603 4d> Gn)-

Given data samples x1, . . ., 2, drawn from g4(z) and noise
samples x7, ..., z;, from g,(z), the empirical estimator is
0%°(dd, Gn), where g and g, denote the corresponding em-
pirical distributions. We remark that directly inheriting the
property of the Bregman divergence, the f-NCE objective
is invariant to adding or subtracting a linear function and
translation by constants; see Appendix B.1.1 for a formal
statement.

By constructing the f-NCE objective in terms of a Breg-
man divergence, we can easily prove that the objective is
consistent in the population limit, which we call Fisher con-
sistency, provided that the generating function f is strictly
convex and the model is well-specified.

Proposition 1.1 (f-NCE: Fisher consistency). Let
f:R>o — R be a strictly convex function and assume
supp(qd) C supp(qn). If there exists 6* such that ¢g-(-) =
qd(-), then ¢6}°e(qd,qn)(') = qd(-).

Remark 1.1. Since the original family of unnormalized
distributions {¢g(x): 6 € O} may not contain normalized
distributions, we consider an augmented family ¢q(z) =
e“pg(x) for @ = (0,c) for ¢ > 0 for f-NCE. Then, we
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Table 1. Examples of the NCE objective. Recall that § £ (6,v) € © x R.

Name

Generator function f(p)

NCE objective L}°(8)

Log (Gutmann & Hyvirinen, 2012)

fog(p) £ plogp — (p+1)log(p + 1)

PO
pot+1

1
pot+1

—Eq[log %] — Eqg, [log

. > —a P60 \au
Asymmetric power (a)  fa(p) £ 2221 forar ¢ {0,1) LB ()17 + LB, [(22)7]
Asymmetric inverse log  fo(p) £ li% falp) = —logp Eg[£] + Eq, [log %}

Asymmetric log  f1(p) £1m(fa(p) + £53) = plogp By, flog 2] + Eq, [ 2]

assume that {pg(x): € © x R} is well-specified, i.e.,
there exists ¢* € R and 0* such that q4(-) = e ¢g- ().
Hereafter, 0 denotes the augmented parameter, where 0
without an underline denotes the original parameter.

We consider the examples of f in Table 1 as the canonical
examples; each f (or the corresponding f-NCE objective)
is named based on its correspondence to a proper scoring
rule (Gneiting & Raftery, 2007). It is easy to check that v
does not affect the objective function for the case of power
scores fo(p), and we thus set v = 1 in this case. We
note that in the DRE literature, a similar objective based on
the generator function f;(p) is known as Kullback-Leibler
Importance Estimation Procedure (Sugiyama et al., 2008).

2. Two Variants of NCE

In this section, we introduce two variants of the f-NCE
framework: a-centered NCE and f-conditional NCE.

2.1. a-Centered NCE

Consider the asymmetric power generator function f,(p)
for a € R (with v = 1); see the second row of Table 1. We
will introduce a transformation called a-centering in Eq. (3),
which normalizes a given parametric model ¢ () in an a-
and g,-dependent manner. Applying the normalized model
to fo-NCE (i.e., NCE induced by the asymmetric power
score) results in a new variant of NCE. In Sec. 3.1, we show
that this variant provides a unified view on several existing
estimators, seemingly different at a first glance.

We define a normalized model of ¢g(x) called the -
centered model as

7 A ¢9(JC)
o(z) 2 . wh
P0;0() Z.@) 3
Z.(6) 2 Eq () [(2E)1* it #0,
exp(Eq, (o) [log Z:’((;E))]) ifa=0.

Note that Zy(0) = lim, 0 Z,(0). Applying the f,-NCE
objective to the a-centered model, we define

LE™(0:qa an) = LT (D010 da Gn)

i ()]

(é) EQd [Pe;a
11—«

—a

© Eqlo§ " (2)](Bq, g (0)]) =
11—«

)

which we call the a-CentNCE objective. Here, note that
the second term in the f,-NCE objective becomes con-
stant, since we design the a-centered model such that
Eq,[0.o(z)] = 1. Note that the expectation with respect
to the reference distribution g, is embedded in the normal-
ization term of the new model. In Table 2, we provide a
side-by-side comparison between f,,-NCE and a-CentNCE
objectives for o € {0, 1,1}.

We define the o-CentNCE estimator as a minimizer of the
objective function:

05" (g, qn) € arg g L3 (d65 4, n)-

In this case, since any multiplicative scaling to ¢g(z) is
canceled out in the centered model in Eq. (3), the Fisher
consistency follows even when the model is well-specified
up to a constant, unlike the strict well-specifiedness required
in Proposition 1.1.

Proposition 2.1 (a-CentNCE: Fisher consistency). Let o €
R. Assume supp(qq) C supp(qn). If there exists 0* and ¢ >
0 such that cdg(+) = qq(-), then ¢9;ent(qd7qn)(') o qd(+)-

2.2. f-Conditional NCE

In the NCE literature, it is known that the noise distribution
gn must be carefully chosen to guarantee good convergence
of the resulting estimator, generally considered hard in prac-
tice (Chehab et al., 2022). Alternatively, Ceylan & Gutmann
(2018) proposed a new framework called the conditional
NCE (CondNCE), where the idea is to draw noisy samples
conditioned on the data samples. CondNCE was further
justified via a connection to the score matching framework
of Hyvirinen (2005). In this paper, we clarify the connec-
tion to score matching (in Sec. 3.2), and establish the first
finite-sample convergence rate of this estimator (in Sec. 4).

Here, we introduce f-CondNCE, a general CondNCE frame-
work for a convex function f. The idea is same as f-NCE:
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Table 2. Special cases of the f,-NCE and a-CentNCE objectives. The view on the estimators highlighted in blue and boldface via

«a-CentNCE are new; see Theorem 3.2.

Objectives a=0 o= % a=1
n P0 n bo n b0
Eqq [;*ﬁ] + Eq, [log ,Tf] 2(Eqq [« / L} + Eq, [ Tf]) Eqq[log %Q] + Eq, [(T:)}
fa-NCE (InvIS (eNCE (Importance Sampling (IS)
(Pihlaja et al., 2010)) (Liu et al., 2021)) (Pihlaja et al., 2010; Riou-Durand & Chopin, 2018))
¢
a-CentNCE ~ Eag [q*"]eEq" fos ] Eqq [log ] + log Eq, [éf}

¢
(GlobalGISO
(Shah et al., 2023))

[
2By [, /BB, [/ 22]

(MLE (Flsher 1922),
MC-MLE (Geyer, 1994; Jiang et al., 2023))

we aim to minimize the Bregman divergence between two
density ratios with respect to f. In this case, instead of
the noise distribution ¢,, we consider a channel (condi-
tional distribution) 7 (y|z), and aim to contrast the joint
distributions qq(z)7(y|x) vs. qa(y)m(x|y). Comparing
to g4(x) vs. ¢n(z) in the standard NCE, the contrast is
self-referential in the sense that the data distribution g4 ap-
pears on the both sides. Let py(z,y) = % be
the model density ratio in this case, implicitly assuming
v = 1. We define the generalized conditional NCE objec-
tive L‘}"“d(m; qd, ™) as in Eq. (4), where the last equality
follows from pg(y, 2) = pe(z,y) L. For further simplicity,
we focus on symmetric channels, i.e., (y|x) = 7(z]y), in

which case the ratio simplifies to pg(z,y) = 90(2)  For

®6(y)
supp(qq) = X = RY, canonical examples are (i) a Gauss-
ian noise 7 (y|z)

= N (y;x,0%I) and (ii) a uniform noise
over a ¢s-norm ball or sphere for some s > 1. We define
the f-CondNCE estimator as a minimizer of the objective:

05" (g0, ™) € arg min L5 (90; g0, m)-

Similar to a-CentNCE, the Fisher consistency follows even
when the model is well-specified up to a constant as any
multiplicative scaling to ¢y () is cancelled out.
Proposition 2.2 (f-CondNCE: Fisher consistency). Let
f be a strictly convex function. Let w(y|z) be a
conditional distribution such that supp(qq(z)m(y|z)) =
supp(qa(y)w(x|y)). If there exists a unique 6* and ¢ > 0
such that cég- (-) = qu(-), then ¢9<}ond(qd,ﬂ.)(') x qd(+).

In practice, given ng samples {(z;)};¢; drawn i.i.d. from
q4(x) and conditional samples {y;;}, conditionally in-
dependent from 7 (y|x;) for each 4, we let L‘}°"d(¢g, G, 7)
denote the corresponding empirical objective with a slight
abuse of notation.

3. Connecting the Dots

In this section, we explain how the estimators introduced
in the previous section unify and generalize the existing
estimators and provide new theoretical insights.

3.1. MLE, MC-MLE, and GlobalGISO as Limiting
Instances of Centered NCE

As alluded to above, a-CentNCE estimators interpolate be-
tween MLE (Fisher, 1922) (o« = 1) and GlobalGISO (Shah
et al., 2023) (o« = 0, specifically for exponential fam-
ily), provided that Z,,(6) can be computed analytically, i.e.,
without estimation. In the case of estimating Z,,(#) with
samples, a-CentNCE objective recovers MC-MLE (Geyer,
1994) when av = 1. We formally summarize the connections
in the next statement and Table 2.

Theorem 3.1 («-CentNCE subsumes MLE and Global-
GISO). The following holds:

1. (o = 0: GlobalGISO) For an exponential family ¢g (),
if X is bounded and q,(x) is a uniform distribution over
X, the 0-CentNCE objective Lo(0; qq, qn) is equivalent
to GlobalGISO (Shah et al., 2021b).

2. (e =1: MLE) If Z1(0) is assumed to be computable for
each 6, the 1-CentNCE objective L1(0; q, qn) is equiva-
lent to MLE (Fisher, 1922).

3. (e =1: MC-MLE) If Z,(0) = ]Eq"[(s"((w))] is estimated
with empirical noise distribution G, (), the 1-CentNCE
objective L1(0; {q, Gn) is equivalent to MC-MLE (Geyer,

1994).

Remark 3.1. Note that the connection between GlobalGISO
and MLE can be made for the case when Z,(0) is assumed
to be computable for any 0. At one extreme when o = 1,
in which case the objective boils down to that of MLE, it is
clear that Z1(0) = E,, q (m) = [ o(x
standard partition functlon In the other extreme case where
a — 0, if pg(z) = exp((0,¢(x))) is an exponential fam-
ily, computing Zy(0) boils down to computing By ([t ()]
since Zy(0) x exp((8, Ey, [¢])). For a special choice of g,
(e.g., uniform distribution) and 1) (e.g., polynomial and si-
nusoidal functions), this term can be computed analytically,
as concretely illustrated by (Shah et al., 2023). We also
provide an alternative theoretical view of the 0-CentNCE
objective as a certain KL divergence minimization problem,

)dx becomes the
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£ (94340, ™) 2 Eqyoyr(eln {Af(Qd(ﬂ?)ﬂ'(yh“) ¢e(x)7r(y|x))} Epamiole) [f(ngm)ﬂ(ym)}

qa(y)m(zly)” Po(y)m(zly)

q4(y)(zly)

= Egy(2)n(yla) [~ (po(z, ) + po(y, ) f (pe(y, ) — fpo(y, x))]. )

generalizing the justification for GlobalGISO given in (Shah
etal., 2023); see Theorem B.1.

Next, we provide a result connecting f,-NCE and a-
CentNCE estimators, under the assumption that we have an
optimization oracle that finds the global minima of a given
objective.

Theorem 3.2 (f,-NCE and «-CentNCE estimators are
equivalent). For a set A C © X R in the augmented pa-
rameter space, let Alg = {0: (0,v) € A for some v € R}
denote the subset corresponding to ©. Then,

argmin  L3°(0;da, ¢n)| = argmin LT (0; qa, Gn)-
0=(0,v)EOXR S 0co

Remark 3.2. We remark that, for o« = 1, Riou-Durand &
Chopin (2018) proposed to convert the MC-MLE objective
by the inverse of the 1-centering operation, which they call
the Poisson transform (Barthelmé & Chopin, 2015), into
the f1-NCE objective, which they call the importance sam-
pling (IS) objective. In this view, our a-centering can be
understood as the inverse of the generalized Poisson trans-
form. Via the equivalence, Riou-Durand & Chopin (2018)
analyzed the asymptotic property of MC-MLE by studying
the f1-NCE. Similarly, one can analyze the statistical prop-
erty of GlobalGISO (with any valid choice of q,, beyond the
uniform distribution) when Zy(0) is estimated with samples
Sfrom q,(x) via analyzing the fo-NCE objective.

3.2. Revisiting the Connection Between CondNCE and
Score Matching

Ceylan & Gutmann (2018) argued that for a continuous
domain X, the original CondNCE objective is related to the
score matching objective of Hyvérinen (2005), justifying
the consistency of CondNCE. Here, we demonstrate that
this interpretation can be misleading in a realistic setting
with finite samples. To revisit this connection, we further
restrict the type of channels to 7 (y|x) parameterized by
a parameter ¢ > 0, such that y ~ 7. (y|z) is equivalent to
y = x + ev for some v ~ gs(-) with zero mean and identity
covariance, i.e., Eg [v] = 0 and E, [vvT] = I;. With this
simplification, we denote the objective function as

L™ (¢03 g4 gs: €)
2 Eqy(a)a(0) [~ (Po(@,9))
+ po(y, ) f (po(y, x)) — f(po(y, x))],

where y £ x + ev. Then, we show that the f-CondNCE ob-
jective behaves as the score matching objective (Hyvérinen,
2005) in the limit of € — 0. Formally:

Theorem 3.3 (Asymptotic behavior of population
f-CondNCE for small €). The population f-CondNCE ob-
Jjective can be written as

ﬁ}ond((be; qd, Gs; E) =—f(1)+ f//(l)ﬁsm(ﬁbe; %)62 + 0(62)7

where

. 1
L™ (903 ) 2 Eqya) [6r(V2 10g 60(2))+5|V.s log ¢0() ]

denotes the (population) score matching (SM) objec-
tive (Hyvdrinen, 2005).

This statement generalizes the result in (Ceylan & Gutmann,
2018) for fiog-CondNCE to f-CondNCE for any f. Below,
we explain why this statement may be misleading as the
f-CondNCE estimator with ¢ — 0 does not behave like
the SM estimator. To correctly understand the behavior,
we need to consider the empirical f-CondNCE objective
function that defines the empirical estimator, instead of the
population objective.

Theorem 3.4 (Asymptotic behavior of empirical
f-CondNCE for small €). The empirical f-CondNCE
objective can be written as

L™ (ho3 dar Gs) = — f(1)
+ 2f"(1)Eqg,(2)d.(v) [V log do () Tv]e
+ f"(1) L= (o5 4o, ds )€ + 0(€7).

Here, we define the empirical sliced SM (SSM) objec-
tive (Song et al., 2020)

L= (¢0; qd, Gs)
1
= Egy(2)du(v) [UTVi log gg(x)v + 5 (vTV log ¢e(:c))2} :

Remark 3.3. Since we assume that gs(v) has zero mean,
Theorem 3.3 readily follows as a corollary of Theorem 3.4,
as the O(€) term will converge to 0 in the population limit
of ¢s. In a finite-sample regime, however, the dominating
term of the f-CondNCE objective becomes the O(¢) term,
i.e, as € — 0, we have

1 LF (ge; das ds) + /(1)
¢ 2f"(1)

— Eéd(z) [Vm log ¢9 (m)]TEqs(v) [’U]
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Thus, the f-CondNCE objective is dominated by this statisti-
cal noise term when € < 1 with fixed sample size of v ~ gs,
and thus too small € should be avoided in stark contrast
to the proposed justification in (Ceylan & Gutmann, 2018).
We revisit this degrading behavior after the finite-sample
guarantee of f-CondNCE in Remark 4.3.

It is worth noting, however, that Eg [v] gets more concen-
trated around 0 as the number of slicing vectors increases.
Therefore, one could consider a carefully chosen € as a
function of the number of slicing vectors and distribution-
dependent quantities, so that *Eg, (1)4.(v) [V log ¢g(x)T]
still vanishes as the number of slicing vectors increases. In
this way, the f-CondNCE estimator might be still consistent
with small €, emulating the behavior of SSM.

Simulation. To demonstrate this behavior, we considered
a simple synthetic setup, where the data generating distri-
bution is N'(u,1) with p = 1. With a conditional noise
distribution 7(y|z) = N (y|z, €2I) with varying €, we plot
the derivatives of the empirical objective of the original
CNCE with varying K € {1,4, 16,64}, where the sample
sizeis N = 10*. As shown in Figure 1, the empirical deriva-
tives characterize the mean fairly closely when € > 1072
or when € is small and K is large. This simple 1D Gauss-
ian example clearly shows the undesirable behavior of the
CNCE objective when ¢ is small. More in-depth study on
the effect of € and K for high-dimensional problems is left
as a future work.

4. Finite-Sample Analysis

In this section, we provide finite-sample guarantees of reg-
ularized versions of the aforementioned NCE estimators,
specifically assuming an exponential family distribution
model ¢g(z) = exp({f,1(x))). Here, § € RP denotes the
natural parameter, ¢: X — RP denotes the natural statistics,
and p denotes the number of parameters. In what follows,
we assume both well-specifiedness and identifiability, i.e.,
there exists a unique 0* € © such that ¢y« (-) < qq(-).

Below, we establish the parametric error rate O(n~='/2) of
convergence for the regularized NCE estimators. The proofs
adapt the analysis in (Shah et al., 2023) for GlobalGISO,
which in turn built upon (Negahban et al., 2012; Vuffray
et al., 2016; 2021; Shah et al., 2021b). We note in passing
that the non-regularized NCE estimators can also be ana-
lyzed, but we can only prove a suboptimal rate of O(n~'/4)
by following the existing analysis in (Shah et al., 2021b).

Following (Shah et al., 2023), we are specifically interested
in the case where the statistics are bounded and so is the
parameter space. We note that the bounded statistics may not
be too restrictive, as in many practical scenarios the domain

K=1 K=4 K=16 K=64
x1076
14 . .
g=10"10 °© W W‘W‘""m
14 ] J
x1076
14
g=10"% °
14
x1076
1+
£=10"° o {yfumr]
a4
x107°
2 1 : E
e=10"* OW
2 J
x1074
5 4
£=10"2 0O W
5
e=100 ©
2 J
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Figure 1. Derivatives of the empirical CondNCE objective with
varying e € {107'%,...,10°} and K € {1,4,16,64} for 1D
Gaussian data with true mean p = 1.0 (vertical dashed red lines)
and a conditional noise distribution 7(y|z) = N (y|x, €2I).

X may naturally be truncated during data acquisition (Liu
etal., 2022).

Assumption 4.1 (Bounded maximum norm of ).
SuPzex ”1/}(55)”00 < wmaxfor some wmax > 0.
Assumption 4.2 (Bounded parameter space). For some
constant v > 0, supgeg R(0) < 1.

We note that the gradient and Hessian of the f-NCE objec-
tive can be written as

. 1
VLIE(0) = ;Edd [wgrgiz)e,f,d(pe)} + Eq, Wfrsclzg,f,n(pe)]’
. 1
VELI0) = B [W0TE 1 o(p0)] + o [0TED 1)

where the functions §r(]?e se(p) fori € {1,2} and r €
{d, n} are defined in the leftmost column of Table 3; see

Lemma B.3.

Our analysis relies on the boundedness of the model density
ratio pg € (Pmin, Pmax)- In each result, we clarify the defi-
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nition of the worst-case density ratios (pmin, Pmax ). These
ratios affect the convergence rate through the following
quantities:

r(ii fr 2 inf |£r(12 1 r( )‘ and
7 pE(Pmin;Pmax)
(i) . &)
Bncefr: sup |£ncefr(p)‘ for i€ {132}5

PE(Pmin,Pmax)

where r € {d, n}. We remark that these quantities differ for
each estimator. For the canonical choices of f(p), i.e., log
and asymmetric power, these quantities are explicitly given
in Table 3.

Let R: © = R>( be anorm over ©, and R*: © — R>
be its dual norm. Define
0
Tz £ 161, ©6)
oeao\ (0} 110]l2
R*(0
TYR*;00 = sup ( ) P (7)
0cRF\{0} ||9||max
R(6
YRi2 = sup L (®)

ocer(o} 1012

Here 40 = {460: 6 € ©}. These quantities capture the
geometry of the norm R(-) imposed on the parameter space
O, and appear in the convergence rates.

Theorem 4.1 (f-NCE: finite-sample guarantee). Pick a
strictly convex function f: R, — R. Define

pol))

A .
mins Pmax) — inf o\ ), su
<p P ) (:EGX,QG@XR/)*( ) .'cEX,QEpG)XR
and define the quantities in Eq. (5) accordingly. Forr €
{d, n}, define
A 2 Amin (Bq, [0907]).

min,r

Let 0" be such that

find,nn

gnce,R : n A A
0 . € aT8 Ierélél{ﬁfce<9’ Gdy Gn) + )\nd,nnR(H)}

for some A, n, > 0. Then, forany A > 0and ¢ € (0,1),
there exists a choice of A, n, such that ||9;C:d7€nn —0%]2 <

A with probability > 1 — 6, provided that for each r €
{d,n},
2

1
n — Q(max{ (Br(lcg o )27721 27722* max
r 2 nce nce ’
A% (v _1b(c<)efd/\ d+b A )?

nce, f,n” min,n

mll'l

71 meax lo ﬁ
()\nce ) g 6 "

min,r

Remark 4.1. To the best of our knowledge, this result is the

first finite-sample convergence rate for f-NCE estimators.

We state the finite-sample statement with a minimal set of as-
sumptions, along with the bounded statistics and parameter
space assumptions. While achieving the parametric rate of
convergence O(n~'/?) is appealing, to have non-vacuous
rates, however, we need all the quantities in the sample com-
plexity expression to be within a range bounded away from
0 or co. More concretely, if we further assume that the dual
norm of the statistic sup,cy R*(¥(z)) < 7 is bounded for
some constant T > 0, it is easy to check that the worst-case
density ratios are bounded as (pmin, Pmax) C (€777, €"7)
for f-NCE, where r is defined to be the diameter of © mea-
sured in the norm R(-); see Assumption 4.2. We note that
the worst-case density ratios affect the quantities in Eq. (5)
polynomially for the canonical examples in Table 3, which
in turn affect the sample complexity polynomially. Hence,
the leading constant grows exponentially in r and d sim-
ilar to (Shah et al., 2021b; 2023). This remark remains
valid for the following two statements for a-CentNCE and
f-CondNCE, as the worst-case density ratio bounds depend
similarly on r and 7. We also remark that the minimum
eigenvalue conditions are typically assumed in the exist-
ing finite-sample analysis (Vuffray et al., 2016, Shah et al.,
2021b; 2023), while (Shah et al., 2021a) establishes an
explicit lower bound on the minimum eigenvalue for node-
wise-sparse Gaussian MRFs.

Theorem 4.2 (a-CentNCE: finite-sample guarantee). Pick
a € R. Define

poa(@). sup fpalc))

4 inf
(pminv pmax) — m
reX,0€0©

reX,0€0

and define the quantities in Eq. (5) for f = f, accordingly.
Qd(l) @
Let ﬁg‘*;a(x) 2 (qn(J-) )

(LT ],andlet

ind = Amin (Bqy[(¢¥ — Eq, [¥56+.0]) (¥ — Eq, [¥55-,a]) 7))
Xfrel:ﬁné (]EQn[wap()* ] E%[wpﬂ*;a} Qn[ql)p()*;a] )

Let éff”;f;R be such that
Ot € arg mind LE™(0: 4o, 4n) + Ay RAO) |

for some Xy > 0. Define Pmaxa = Pmax +
IEq, V05 o)l max- Then, for any A > 0and § € (0,1),

there exists a choice of A, such that 0™ — 6*||, < A
d find
with probability > 1 — 4, provided that

< { (Brgcg Jfasd ) 77%27723* ¢3nax o
ng = | max )
A2( nce f d) {(1 - a))\ce?t Nel + a)\cent 2

min,n
’Yl 2wmax « lo p2
(Acent 2 08 % 5

min,d
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Table 3. Definitions of §nce fe(p)fori € {1,2} andr € {d, n} for example generator functions f.

Definitions Log Asymmetric power
f(p) Jios(p) fo(p)
1 o
rEce)fd(p)é_pf”( ) _ﬁ —p!
1 (%
éce) 1a(0) = 0* 1" (p) ral p
2 _
&2 1.4(0) 2 pgs(p) e (1—a)p*!
2 (e
€2 1a(0) 2 p*("(p) = 95 (p)) e ap
1 1 a
(Bred s Brgd 1) (1) (P50 )
(B?SL):efd’Bncefn) (171) |1_a‘pm1n7‘a|pmax)
A min max
(bnce ,f,d? ¥nce, f, n) (“iv K)’ where £ = (Prx/:ir;+1)2 A (p:ax+1)2 (|1 - a‘pmaxv |a‘pm1n)

Remark 4.2 (Special cases). For a = 0, this result gener-
alizes the finite-sample analysis of GlobalGISO of (Shah
et al., 2023) beyond when qy is the uniform distribution. For
a = 1, we establish the convergence rate of the MLE, which
we believe to be the first result of this kind.

For the CondNCE estimator, we consider K = 1, i.e., we
have {(z;,y:)}1¢y ~ qda(z)m(y|z) for simplicity.
Theorem 4.3 ( f-CondNCE: finite-sample guarantee). Pick
a strictly convex function f: R, — R. Define

Pmin = inf Po (I7 y)a
(z,y)€supp(qq ()7 (y|x)),0€O0
A
Pmax = sup Po (xv y)

(z,y)€supp(qa(z)m(y|z)),0€0
and define the quantities in Eq. (5) accordingly. Let
)\cond

o = Amin (Egy(2)m(y12) (0 (€)= (y)) (¥ () = (y))T]).

Let 9;?2?3 be such that
pcond, R .
0ing € arg‘rgrélg{ﬁwn (0; da, ) + )\ndR(G)}
for some A\, > 0. Then, forany A > 0and § € (0,1),

there exists a choice of \,, such that ||t9Cond R_orl, <A
with probability > 1 — §, provided that

1
(Bioﬂd fd "‘ Béozd,f,n)27722'27722*- o
ftd = §3{ max (2) cond
A2( cond ,f.d + bcond,f,n) ()‘mln)

71;2¢max 1 p2

()\copd)Z Og? :
Here, bgizd For and Béo)nd groare defined similar to
Eq. (5), where the infimum and supremum are taken over
(g2 £ in place of (prain: Prna):
Remark 4.3 (Behavior of f-CondNCE in a small-¢ regime).
As alluded to in Sec. 3.2, the undesirable behavior of f-
CondNCE with small € can be also seen from the sam-
ple complexity, since the minimum eigenvalue /\C°“d ~

mln

Amin (Egy(2) [Va (@) Vath(2)T]) = 0as € — 0. In The-
orem C.3 in Appendix, we establish that the asymptotic
covariance of the estimator is V;D"d = If_lc +I;", where

T 2 By w03 £ (o) (@0() — () ((x) — ()],
Cr 2 Eqy (o) (€00 5 (002 (9(2) — () (W () — d(y))T],

where we let qq »(2,y) = qua(z)7(y|z). For a channel
y ~ w(y|z) defined as y = x —|— ev as in Sec. 3.2, it is easy
to check that lim._,q e%ff = Egy2) [V (2) Vb (2)T] =
lime_,o e%é t. Hence, in the small-¢ regime, the asymptotic
covariance of the f-CondNCE also behaves as ])}°"d R
EE () [Vat (@) Vot (@) ], and hence blows up as € — 0.
These observations are consistent to Theorem 3.4.

Proof Sketch. Our finite-sample analysis of the regularized
NCE estimators follows closely that of Shah et al. (2023),
which relies on the seminal result of (Negahban et al., 2012)
for regularized M-estimators:

Theorem 4.4 (Negahban et al., 2012, Corollary 1). Let
21, .., 2N be Li.d. samples drawn from a distribution p(z).
Let hy(z) be a convex and differentiable function parame-
terized by 0 € ©. Let L, (0) £ 137" | hy(z;) denote the
empirical objective function. Define

0, € arg mein{ﬁn(e) + )\nR(H)}, )
where Xy, is a regularization penalty and R: © — R>qg isa
norm over ©. Let 0* € arg ming E,,.)[h¢(2)]. Assume that

1. The regularization penalty A,
2R*(VoL,(6%)), where R*: ©*
norm of R over the dual space ©*;

satisfies A, >
— Ry is a dual

2. The empirical objective 0 +— ﬁn(O) satisfies a re-
stricted strong convexity condition at § = 0* with
curvature £ > 0, i.e., Aps ) (0,60%) > k|6 — 0%||3.
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Then, the estimator 0, in Eq. (9) satisfies
A A
16 = 0712 < 3—=R;2.

To ensure the first condition with A, sufficiently small, we
show that, with high probability, the gradient of the em-
pirical objective is sufficiently small, using Hoeffding’s
inequality under Assumption 4.1. For the second condition,
we show that the lowest eigenvalue of the Hessian of the
empirical objective is lower bounded, again by Hoeffding’s
inequality invoking Assumption 4.1 and the positivity of
the minimum eigenvalues of some second moment matri-
ces. Combining the two high-probability events by a union
bound completes the proof.

Simulation. We include a preliminary simulation result
of some NCE estimators in Appendix G. We leave a more
thorough empirical investigation on the estimators in this
paper for high-dimensional problems as a future work.

5. Discussion and Conclusion

Beyond Bounded Exponential Families. An intriguing
question is whether we can relax the boundedness assump-
tion on v (x), making our estimators applicable beyond
bounded (or truncated) exponential families. Here, we high-
light what we need to modify in the proofs to extend the
validity beyond this assumption, using f-NCE estimators as
an example. As sketched above, the proof of Theorem 4.1
consists of two parts: (1) the concentration of the gradient
of the empirical objective around 0, at the true parameter
6* (Proposition D.1) and (2) the restricted strong convexity
(anti-concentration of the Hessian) of the empirical objec-
tive, around the true parameter 6* (Proposition D.2). In-
voking the uniform bound via the worst-case density ratios,
we apply Hoeffding’s inequality using the boundedness of
the max-norm of ¢ (x). For unbounded sufficient statistics,
we need a technique to handle the concentration behaviors,
without worst-case density ratios bounded away from 0 and
oo. For example, if the exponential family distribution is
sub-Gaussian and the sufficient statistics are polynomials,
one could use the sub-Weibull concentration bounds.

Local Versions of NCE-based Estimators. So far, we take
a global approach to learning the parameter 6 by treating it
as a single object. In the context of exponential families, this
is beneficial when exploiting a global structure on € such as
a bounded maximum norm, a bounded Frobenius norm, or a
bounded nuclear norm when 6 is matrix-shaped (Shah et al.,
2023). However, for exponential families corresponding
to a node-wise sparse Markov random fields (MRFs), the
structure to be exploited is inherently local. Specifically, in
node-wise-sparse MRFs, the conditional distribution of each
node given all the other nodes can be expressed by number
of parameters which scale with the maximum-degree of
the MRF, which is assumed to be much smaller than the

dimension. In such scenarios, it is convenient to learn the
conditional distribution for each node rather than learning
the joint distribution over all nodes. There exists a long line
of work on this approach, e.g., see (Besag, 1975; Vuffray
et al., 2016; 2021; Shah et al., 2021a; Ren et al., 2021), a
representative of which is the pseudo likelihood estimator of
Besag (1975). Maybe not very surprisingly at this point, if
we apply the NCE framework in a local manner, it provides
a unifying view on all of the aforementioned works. We
defer a detailed discussion to Appendix E.

Optimization Complexity. So far, we have focused on
the statistical properties of the proposed estimators. Now,
we make a few comments regarding the optimization com-
plexity as concluding remarks. The first-order important
property regarding optimization is the convexity of the ob-
jective functions with respect to the natural parameter 6. In
Appendix F.1, we characterize a sufficient condition for the
convexity of f-NCE, a-CentNCE, as well as f-CondNCE.
Specifically, we show that fi,s and f, for a € [0, 1] result
in convex objectives. Somewhat surprisingly, a counterex-
ample of convex f which cannot guarantee convexity of the
objective function is f,(p) for a & [0, 1].

In the optimization community, a recent line of work (Liu
et al., 2021; Lee et al., 2023) studied the optimization land-
scape of the original NCE objective and showed that the
landscape can be arbitrarily flat even for a scalar Gauss-
ian mean estimation. This is mainly due to the unbounded
and light-tailed nature of Gaussian distributions. Under the
boundedness assumption, we prove in Appendix F.2 that the
empirical f-NCE objective function, for example, is smooth
with probability 1. Then, from (Agarwal et al., 2010, Theo-
rem 1), and the restricted strong convexity (Proposition D.2),
a projected gradient descent algorithm has a globally ge-
ometric rate of convergence. A recent work (Jiang et al.,
2023) analyzed the optimization landscape of MC-MLE and
proposed an optimization algorithm with efficient optimiza-
tion complexity guarantee together with a strong empirical
result, missing the connection to the original work (Geyer,
1994) and its statistical properties analyzed in (Riou-Durand
& Chopin, 2018). Building on top of our work and (Jiang
et al., 2023) could be an exciting future direction at the
intersection of statistical and optimization complexity for
learning unnormalized distributions.

Conclusion. We hope that this work offers a unifying per-
spective on both existing estimators and those yet to be
discovered, and that it contributes to a more systematic
understanding of the trade-off between statistical and op-
timization complexity in the context of efficient learning
with unnormalized distributions. As emphasized through-
out the paper, further investigation is warranted to better
understand the empirical behavior of different estimators in
high-dimensional settings.



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

Acknowledgements

We appreciate the insightful discussions with Devavrat Shah.
This work was supported in part by the MIT-IBM Watson
Al Lab under Agreement No. W1771646, and by AFRL
and by the Department of the Air Force Artificial Intelli-
gence Accelerator under Cooperative Agreement Number
FA8750-19-2-1000. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Department of the Air Force or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Agarwal, A., Negahban, S., and Wainwright, M. J. Fast
global convergence rates of gradient methods for high-
dimensional statistical recovery. In Adv. Neural Inf. Proc.
Syst., volume 23, 2010.

Barthelmé, S. and Chopin, N. The Poisson transform for
unnormalised statistical models. Stat. Comput., 25(4):
767-780, 2015.

Besag, J. Statistical analysis of non-lattice data. J. R. Stat.
Soc. D, 24(3):179-195, 1975.

Ceylan, C. and Gutmann, M. U. Conditional Noise-
Contrastive Estimation of Unnormalised Models. In
Dy, J. and Krause, A. (eds.), Proc. Int. Conf.
Mach. Learn., volume 80 of Proc. Mach. Learn.
Research, pp. 726-734. PMLR, 10-15 Jul 2018.
URL https://proceedings.mlr.press/v80/
ceylanl8a.html.

Chehab, O., Gramfort, A., and Hyvirinen, A. The optimal
noise in noise-contrastive learning is not what you think.
In Proc. Conf. Uncertainty Artif. Intell., pp. 307-316.
PMLR, 2022.

Chehab, O., Hyvarinen, A., and Risteski, A. Provable ben-
efits of annealing for estimating normalizing constants:
Importance sampling, noise-contrastive estimation, and
beyond. In Adv. Neural Inf. Proc. Syst., volume 36, 2023.

Fisher, R. A. On the mathematical foundations of theoretical
statistics. Phil. Trans. R. Soc. A, 222(594-604):309-368,
1922.

10

Geyer, C. J. On the convergence of Monte Carlo maximum
likelihood calculations. J. R. Stat. Soc. B, 56(1):261-274,
1994.

Gneiting, T. and Raftery, A. E. Strictly proper scoring rules,
prediction, and estimation. J. Am. Statist. Assoc., 102
(477):359-378, 2007.

Gutmann, M. and Hirayama, J.-i. Bregman divergence as
general framework to estimate unnormalized statistical
models. In Proc. Conf. Uncertainty Artif. Intell. AUAI
Press, 2011.

Gutmann, M. U. and Hyvirinen, A. Noise-contrastive esti-
mation of unnormalized statistical models, with applica-
tions to natural image statistics. J. Mach. Learn. Res., 13
(2), 2012.

Hinton, G. E. Training products of experts by minimiz-
ing contrastive divergence. Neural Comput., 14(8):1771-
1800, 2002.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Hyvirinen, A. Estimation of non-normalized statistical
models by score matching. J. Mach. Learn. Res., 6(4),
2005.

Hyvirinen, A. Some extensions of score matching. Comput.
Stat. Data Anal., 51(5):2499-2512, 2007.

Jiang, W., Qin, J., Wu, L., Chen, C., Yang, T., and Zhang,
L. Learning unnormalized statistical models via compo-
sitional optimization. In Proc. Int. Conf. Mach. Learn.,
pp- 15105-15124. PMLR, 2023.

Lee, H., Pabbaraju, C., Sevekari, A., and Risteski, A. Pitfalls
of Gaussians as a noise distribution in NCE. In Int. Conf.
Learn. Repr., 2023.

Liu, B., Rosenfeld, E., Ravikumar, P., and Risteski, A. Ana-
lyzing and improving the optimization landscape of noise-
contrastive estimation. arXiv preprint arXiv:2110.11271,
2021.

Liu, S., Kanamori, T., and Williams, D. J. Estimating density
models with truncation boundaries using score matching.
J. Mach. Learn. Res., 23(186):1-38, 2022.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu,
B. A Unified Framework for High-Dimensional Analysis
of M-Estimators with Decomposable Regularizers. Stat.
Sci., 27(4):538 — 557, 2012. doi: 10.1214/12-STS400.
URL https://doi.org/10.1214/12-STS400.

Pabbaraju, C., Rohatgi, D., Sevekari, A. P,, Lee, H., Moitra,
A., and Risteski, A. Provable benefits of score matching.
In Adv. Neural Inf. Proc. Syst., volume 36, 2023.



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

Pihlaja, M., Gutmann, M., and Hyvirinen, A. A family of
computationally efficient and simple estimators for un-
normalized statistical models. In Proc. Conf. Uncertainty
Artif. Intell., pp. 442-449. AUAI Press, 2010.

Ren, C. X., Misra, S., Vuffray, M., and Lokhov, A. Y. Learn-
ing Continuous Exponential Families Beyond Gaussian.
arXiv, February 2021.

Riou-Durand, L. and Chopin, N. Noise contrastive esti-
mation: Asymptotic properties, formal comparison with
MC-MLE. Electron. J. Stat., 12(2):3473-3518, 2018.

Shah, A., Shah, D., and Wornell, G. On learning con-
tinuous pairwise Markov random fields. In Int. Conf.
Artif. Int. Statist., volume 130 of Proceedings of Ma-
chine Learning Research, pp. 1153-1161. PMLR, 13—

15 Apr 2021a. URL https://proceedings.mlr.

press/v130/shah2la.html.

Shah, A., Shan, D., and Wornell, G. W. A com-
putationally efficient method for learning exponential
family distributions. In Adv. Neural Inf. Proc. Syst.,
2021b. URL https://openreview.net/forum?
1d=BIWXduMZBEM.

Shah, A., Shah, D., and Wornell, G. W. On computation-
ally efficient learning of exponential family distributions.
arXiv preprint arXiv:2309.06413, 2023.

Song, Y. and Kingma, D. P. How to train your energy-based
models. arXiv preprint arXiv:2101.03288, 2021.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Proc. Conf. Uncertainty Artif. Intell., pp.
574-584. PMLR, 2020.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von
Biinau, P., and Kawanabe, M. Direct importance estima-
tion for covariate shift adaptation. Ann. Inst. Stat. Math.,
60(4):699-746, 2008.

Sugiyama, M., Suzuki, T., and Kanamori, T. Density-ratio
matching under the Bregman divergence: a unified frame-
work of density-ratio estimation. Ann. Inst. Stat. Math.,
64(5):1009-1044, 2012.

Uehara, M., Matsuda, T., and Komaki, F. Analysis of noise
contrastive estimation from the perspective of asymptotic
variance. arXiv preprint arXiv:1808.07983, 2018.

Van der Vaart, A. W. Asymptotic statistics, volume 3. Cam-
bridge university press, 2000.

Vuffray, M., Misra, S., Lokhov, A., and Chertkov, M. Inter-
action screening: Efficient and sample-optimal learning
of Ising models. In Adv. Neural Inf. Proc. Syst., vol-
ume 29, 2016.

11

Vuffray, M., Misra, S., and Lokhov, A. Y. Efficient learning
of discrete graphical models. J. Stat. Mech., 2021(12):
124017, December 2021. ISSN 1742-5468. doi: 10.1088/
1742-5468/ac3aca.



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

Appendix
A Glossary 12
B Basic Properties 12
B.l f-NCE. . . . e e e 13
B.1.1 Invariance . . . . . . . . . . . e e e e e 13
B.1.2 Derivatives . . . . . . . . e e e e e e e 13
B2 «a-CentNCE . . . . . . e 14
B.2.1 Derivatives . . . . . . o e e e e e e e 14
B.2.2 An Alternative Interpretation of GlobalGISO . . . . . . .. ... ... ... ... ... . 14
B.2.3 Proofof Theorem 3.1 . . . . . . . . . . . e e 15
B.2.4 Proofof Theorem 3.2 . . . . . . . . . . . e e 16
B.3 f-CondNCE . . . . . . . e 17
B.3.1 Derivatives . . . . . . . e e e e e e e 17
B.3.2 Proofof Theorem 3.4 . . . . . . . . . . . e 18
C Asymptotic Guarantees 19
C.l f-NCE. . . . e 19
C.2 «a-CentNCE . . . . . . e 19
C.3 f-CondNCE . . . . . . . e e 19
D Finite-Sample Guarantees 20
D.1 f-NCE. . . . e e e 20
D.2 «a-CentNCE . . . . . . . e e e 23
D3 f-CondNCE . . . . . . . e 26
E Local NCE for Node-Wise-Sparse MRFs 29
F Optimization Complexity 30
F1  Convexity . . . . . . o o i e e e 30
F2 Smoothness . . . . . . . . . e e e 30
G Experiments 31

A. Glossary

For a reference, we provide a summary of notations in Table 4.

B. Basic Properties

In what follows, we use Euler’s notation and Lagrange’s notation for derivatives. First, we remark the derivatives of the
Bregman divergence with respect to the second argument:

Af(z,y) = f(x) = fly) = f'(y)(z —y),
OyAf(x,y) = (y —2) f"(y),
OyyAs(z,y) = f"(y) +uf"(y) —2f" (y),
Oy Ap(2,Y) 2=y = f”(y)~

Further, since we consider exponential family distributions, we have

Og,pe = pe; and  Op,0,p9 = pPei¥;-
Lemma B.1. For a three-times differentiable function f, let g¢(p) = —(pf"" (p) + " (p)).

Do,0, A5 (", po) = Vibipe{(paf" (po) + f"(pa))(po — p*) + pof” (pe)}
= Vipg(po(f" (pe) — ggpe)) + p*grpe))-

12
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Table 4. Summary of notations.

Notation Definition Description
C R4 domain of z
© CRP domain of
po(x) % (scaled) density ratio
An(z,2")  h(z) —h(z') — V.h(z')T(z — 2’) Bregman divergence of h: RP — R
07°(qd,n) € arg Igléiél L7003 ad, qn) f-NCE estimator (population)
0" (g4, qn) € arg 19128 LE™(dgs qd, Gn) a-CentNCE estimator (population)
9;°”d (g4, ) € arg Igrgél £}°”d (do; qa, ™) f-CondNCE estimator (population)
H}Ce(q}, Gn) € arg Igrgél L7003 4, Gn) f-NCE estimator (empirical)
agtent((jd’ qn) € arg rergg ﬁ(&ent((j)a; Gd, qn) a-CentNCE estimator (empirical)
9§c°”d( j4,7T) € arg 19128 £}°”d (d0; Gd, ) f-CondNCE estimator (empirical)
R(-) anorm over ©
R*(+) a dual norm over ©*
Pmin minimum density ratio
Pmax maximum density ratio

B.1. /-NCE
Recall

LFe(0) £ LT(do; das dn) = *%E@d [/ (po)] + Eq, [pof'(po) — f(po)]-

B.1.1. INVARIANCE

We define an equivalent class of generator functions f that yield the same NCE objective. For a function f,, let F"¢(f,) =

{f: E;Ce ~ E}ie}, where the notation ~ denotes that the two objective functions are equivalent up to constants, i.e., there
exist A, B € R such that E}Ce(qﬁ@; a4, qn) = ALY (d65 G4, gn) + B.

Lemma B.2. If f € F"(f,), (p+— af(p)+bp+c) € F*°(f,) for any a,b,c € R.

B.1.2. DERIVATIVES

Lemma B.3 (NCE: derivatives).
An 1
VoLF(0) = ~Eaq[=po f" (p0)Volog po] + Eq,[5." (o) Vo log po,

A 1
VELYE(0) = - B, [(=pof" (po) — paf" (pa)) Ve log paV ] log po — pa f" (pe) Vi log pe)
+Eq, (205" (o) + pg " (pe)) Ve log paV log ps + p [ (pe) V5 10g pe.

In particular, we have
VeL[(0%) = E[VoLF(67)] = 0,
VELYE(0%) = %Eqd [po+ 1" (pg+) Ve log pg+ V] log po-|.
For an exponential family model ¢g(x) = exp({0, v (x))), we have
VLFH(O) = S Balve s o(o0)) + Eq [WED 1o (p0)],

13



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

4 1
VELI(0) = L Ba,[00T € pa(po)] + B [00T6L 1. (p0))

where
Eﬁiﬁ., ralp) =—pf" (p),
532, n(P) =02 1" (p),
££§Z_, 1.a(P) = pgs(p),
€2 (o) = 0P (f"(0) — 9¢(p))

In particular, if g4(x) = ¢g+ (x) for some 0%,
VoLFe(0%) = E[V@ﬁ}cew*)] =0,

VELYe(0") = E[VELFe(6%)] = %Eqd [T " (po+)] = B, [0 po+ " (po+)]-

B.2. a-CentNCE

Recall that
Foo() = ro(x)
(Eq,[rg ()])=
and
£al0) £ £a(0:00,00) & 1By 750 (0)] = 1B g~ (0))(By, 15 ()5

B.2.1. DERIVATIVES

It is easy to check that

Lemma B.4.
VG IOg fe:,Ot = 1/1 - ]E% ngé;a},

Vg log 7g.0 = —a{E,, WQ/)ng;a] — Eq, [/l/)fgé;(x]EQn[ fg;a]T}.

B.2.2. AN ALTERNATIVE INTERPRETATION OF GLOBALGISO

Consider an unnormalized model {¢g(x): 6 € O}. For a data distribution ¢q4(x), to which we have sample access, assume
that there exists 6* € O such that ¢g- (z) x g4(z). Let go(2) be a reference distribution which makes E,, [log ¢o ()] exist
for any § € ©. We define a “centered” unnormalized model

- Po(z)

L
90(2) = E o Towdote
and denote its partition function as Z(0) £ [ b9 () dz. We remark that

Eq, [log ¢g(2)] = Eq, [log ¢p(2)] — Eq, log ¢y ()] = 0. (10)

We then define an objective for distribution learning as

If ¢g(z) = exp({,v(x)) is an exponential family distribution over a compact support X' and g,(x) is the uniform
distribution over X, then it boils down to the objective function studied by (Shah et al., 2021b).

14
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Fisher Consistency To understand the property of the objective, we introduce another unnormalized model

) 2 Qgel(x) .
591,92( ) g592@?)(]“( )?

and denote its partition function and the normalized distribution as

Z<917 02) = /591162 (:C) dz and 961, <x) = é(g(léeli(oi))

We can then show that

Theorem B.1. )
log Lgiso (0) = D(qn||qo+,0) — log Z(67).

As an immediate corollary, we can prove the Fisher consistency of the objective function.

Corollary B.1 (Fisher consistency). Let 0* € argming Lgiso(8). Then, ¢g« (z) o qq(x) for x € supp(gn).

The proof of Theorem B.1 readily follows from the following lemmas.

Lemma B.5.
Z(0*,6)

Z(0%)

ﬁgisc(o) =

Proof. Consider

Lemma B.6. Forany 6,,05 € O,
D(anqel,ez) = log Z<91a 92)

Proof. Consider

an (@
D(Qanel,ez) = Eq" [log QQnQ()x):|
1,V2

~E, [log Z(0y,05) + log M}
bo, (2)
= log Z(@l, 92)
Here, in the last equality, we use the fact that log qgg(x) is centered under ¢, (), as alluded to earlier in Eq. (10). O
B.2.3. PROOF OF THEOREM 3.1

Theorem 3.1 (a-CentNCE subsumes MLE and GlobalGISO). The following holds:

1. (a = 0: GlobalGISO) For an exponential family ¢g(x), if X is bounded and g, () is a uniform distribution over X, the
0-CentNCE objective L(0; qd, qn) is equivalent to GlobalGISO (Shah et al., 2021D).
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2. (o= 1: MLE) If Z1(9) is assumed to be computable for each 0, the 1-CentNCE objective L (0; 44, qn) is equivalent to
MLE (Fisher, 1922).

3. (a=1: MC-MLE) If Z1(0) = E,, [‘zf((;))] is estimated with empirical noise distribution §,(x), the 1-CentNCE objective

L1 (05 dd, Gn) is equivalent to MC-MLE (Geyer, 1994).

Proof. When a@ — 1, the centering becomes the standard normalization, i.e.,

5 A 1. ¢0(x) oo (x
doa(2) 2 lim - -
P T aS1 (g, [(22@)e)) /e T E,

and thus the objective becomes equivalent to the MC-MLE objectives:

21(6’; Gd; n) = Eqy(a) [log g)gll(x)] = Eu@ [log ¢%($)] FloeSa [(sf((j))] .

When Z;(6) = E,, [(29((5))] = Z(0) is assumed to be computable, this becomes equivalent to MLE.

When o — 0, the centering becomes

bt A g Po(x) Po(z)
¢0;0($) - (}}LI%J b0 () Vo 1/c - E [log %(I)]
(Eq, ( qn(gc)) ) e (@8 (@)
and the objective becomes
Pt gn () ()7 E, . [log 2£2)1
Lo(0; =E = =E A e Fan (@) 108 g,y ]| 11
of 7QdaQn) qd(z)|: 9,0(:16)} Qd(m){gbg(x)}e q (11)

In particular, for the exponential family, we have

Po ()
qn()

where ¢, £ E, () [#)(2)], and thus the objective becomes

log Zo(0) £ By, e [log 222 | = (6,104) — By, log an()],

Lo(6: 44, Gn) = Eqy(a)ldn () exp((6, ¢ (2) — y))]

modulo additive and multiplicative constants. When the underlying domain X’ is assumed to be bounded, we can set g, ()
as the uniform distribution over X. In this case, the NCE objective boils down to the global generalized interactive screening
objective (GlobalGISO) studied by Shah et al. (2021b). O

To provide a comprehensive view, we summarize the connections in terms of the objective functions that correspond to the
unified estimators in Table 5.

B.2.4. PROOF OF THEOREM 3.2

Theorem 3.2 (f,-NCE and a-CentNCE estimators are equivalent). For a set A C © X R in the augmented parameter
space, let Al = {0: (0,v) € A for some v € R} denote the subset corresponding to ©. Then,

argmin  L(0; Ga )| | = arg min L5™(6; a, dn).
0=(0.0)€OXR ° 0o

Proof. On one hand, we first note that v — L°(0; 4a, ¢n) is convex, and for each 6, the minimizer v/}, (0) of the centered
objective satisfies

ot (0) Eglrg ™) '
Eg, ]
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Table 5. Existing estimators as special instances of NCE estimators.

Existing estimators Corresponding NCE objective
MLE (Fisher, 1922) L5E"(0; qd; Gn)

GlobalGISO (Shah et al., 2023) LE™(0; 44, gn)

MC-MLE (Geyer, 1994; Jiang et al., 2023) L5"(6; da, Gn)

IS (Pihlaja et al., 2010; Riou-Durand & Chopin, 2018) E}‘;e(e; ddy Gn)

eNCE (Liu et al., 2021) 3«?(9; Gd> Gn)

Pseudo likelihood (Besag, 1975) L5"(6; da, qn) (local)

GISO (Vuffray et al., 2016; 2021), ISODUS (Ren et al., 2021) L& (6; 4, ¢n) (local)

Moreover,
Vaﬁ;(;e (Q, (jd7 q}) = —ey(ail)E(jd [Téa_l)VQ log 1"9] =+ BuaEqn [T3V9 log 7’9],
so that the f,,-NCE estimator Q;Ze((jd, Gn) = (é}ie(cjd, Gn), V3<°(4a, Gn)) satisfies
Eq,[r6 Vo logro]Eg,[rg 1] = Bq, [r§ 1Eg,[rg ™ Vo log 7). (12)

On the other hand, we have

Vo LEM™(0; g, Gn) = —Equ[rs " Vo log o] (Bg, [rg]) = + Eq [rg Y (Eq,[rg]) = Eq, [r§ Vo log re],

which implies that the a-CentNCE estimator égf”t(qd, qn) is also a root of Eq. (12). This establishes the desired equivalence.
O

B.3. f-CondNCE
B.3.1. DERIVATIVES

We first note that
Lemma B.7.
Vrg(x,y) = ro(x,y)Valogre(z,y),

Vrf;l(ffay) = T3 vr@(xvy) =

1
TG (Jf, y)

In particular, for an exponential family distribution ¢g(x) = exp({0,1(x))), we have

—— V1 .
i Vologro(a.)

Volog po(z,y) = ¥(x) — P(y),
V5 log p(z,y) = 0.

Lemma B.8 (Conditional NCE: derivatives). Let pg(z,y) = pg for a shorthand.

VoLF™(0) = Bgy(@)n(yla)[(00.f" (o) + pg 2 " (g 1)) Ve log pol,
V5L (0) = Eqy@)n(yla) [(—paf" (o) — 03 f" (09)) Vo log paV ] log pg — po f" (ps) V' log po
+ (2052 " (g ") + pg 2 I (05 1)) Ve log paV ] log po + pg * f' (p ') V5 1og pa).

For an exponential family distribution ¢g(x) = exp((6, ¥ (x))), we have

VoLEL™(8) = Eqy(gyn(al) [((x) — () Eana (0o (. 9))],
V3L (0) = By yyn(al) [((2) — 0 () (0(2) — () Eona. (0 (2, 9))],
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where
Eama s (0) 2 07 (07 4 P71 (0) = =65l p o) + &L 10 (0),
€ () 2 07 gr (07 ) + P2 (f"(0) — 9 (p) = €2 1 a(p™) + E2) 1 ()
In particular,
VoLP(6%) =0,
ViLF™(0%) = Eqyynely) [((2) = () ((x) — () o5/ (ps))-
B.3.2. PROOF OF THEOREM 3.4

Theorem 3.4 (Asymptotic behavior of empirical f-CondNCE for small €). The empirical f-CondNCE objective can be
written as

LE™ (h; 4o, 4s) = — f(1)
+ 2f//(1)Eqd(m)q;(v) [Vm log gbe (l‘)T’U]E
+ (D)L= (do: da, ds)€” + o(€?).
Here, we define the empirical sliced SM (SSM) objective (Song et al., 2020)
L™ (¢03 Ga, Gs)
1
£ By [V V2 10g p(@)0 + 5 (07, log 60 (2))?].

Proof. Let Cy(0, €) £ L™ (¢p; Ga, s). Note that

€169 = B |1 0) + 771 £ (™) = 1671,

where we set r = as a shorthand notation. Since by chain rule we have = logr = —V . log ¢g(x + €v)Tv, we
h S22 as a shorthand Since by chain rule we have 2 1 V. log ¢ T
have
0 - _ " Lol
aCf(Q,e)— da(2)gs (v) [V log go(x + ev)T (rf (r)—l—ﬁf (;))}’
and
g T2 " 1 " 1
9 2C (0,€) = Egy(2)d.(v) {v Vi logd)g(erev)v(rf (r)+ T—Zf (;))
2 1 1 1
T,))\2 " 2 g 27 "
+ (Valog gg(z + ev)Tv) (Tf () +r7f7(r) r2f (7") rd (7"))}
Hence,
Cr(0.)| _ =—F(1),
9 -
8*Cf(9,6) _ :2f”(1)]Eqd(m),is(v)[Vxlogqbg(ac)TvL
32
53Cr(0:9] _ = 1"(1) (2B, [T V3 108 00(2)0] + By 01,0 (V108 do () T0)?))

= 2f"(1) L™ (¢9; Gd, Gs)-

Plugging these to the second-order Taylor approximation of € — ¢ +(6,€) around € = 0, i.e.,

0, 1 92 .
6206—1— 8€Cf(9,e) o e+ 5 B 2C,c(@ €) o + o(€%),

concludes the proof. O

éf(@,é) = éf(@,e)
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C. Asymptotic Guarantees

We can establish the asymptotic consistency and normality of the estimators. Though we present the results for exponential
family models for simplicity, one can derive the asymptotic covariances for general unnormalized models and generalize the
results. All the proofs are straightforward from the application of standard M-estimation theory, see, e.g., (Van der Vaart,
2000), so we omit the proofs.

C.1. f-NCE

Theorem C.1 (f-NCE: asymptotic guarantee). Let Q;Czd - (6 ce ¢ ) be a solution of

Finasna® Cfing,na

~nce

0. nyns € AT I%ln E"CG(H).

Let n, £ fng for some 3 > 0. Ifﬁ’}ce(ﬁ) 2 L5(0) as ng — oo uniformly over § € © x R, é;czdn L (0%, ¢*) as
ng — oc. Further, if 0* € int(©), we have \/ng (07— 6*) <4 N(0,V7¢), where we define V7 = I;lcfz‘l,

find,mn
Iy 2 By, lpo- " (o )Y07],

Cs 2 B0, [ (1+ Go0 )i £ (o0 07| = (14 5 )Buslow " ) TBus oo £ (oI

B
for (z) £ [p(x);1]T € RPTY, provided that Iy is invertible. In particular, the asymptotic covariance Vi€ satisfies
Vi = Vi, or equivalently Vi — Vi is a PSD matrix, for any f.

This result has been known, but we present a rephrased version here to contextualize our contribution. The asymptotic
convergence beyond exponential family was established in (Gutmann & Hyvérinen, 2012) for fi,,-NCE and in (Pihlaja et al.,
2010; Uehara et al., 2018) for f-NCE. The optimality of fi,; was established in (Uehara et al., 2018). It was independently
proved that the original fi,s-NCE estimator asymptotic covariance not larger than that of the f;-NCE estimator (and thus
the MC-MLE estimator), which they call the IS estimator, in Loewner order (Riou-Durand & Chopin, 2018). In the same
paper, the asymptotic guarantee for the fi,s-NCE and IS estimators was shown for a general unnormalized distribution
under a non-i.i.d. setting in (Barthelmé & Chopin, 2015).

C.2. a-CentNCE

Theorem C.2 (CentNCE: asymptotic guarantee). Assume that any expectation over q, in the a-CentNCE objective can be

computed for any 0 without samples from q,. Let é;ﬁ’;td be a solution of

Hcent
0(1 ;Nd

€ arg min £"(0; G4, gn).
rg min Lo (6544, qn)

IF L™ (0; Gg, qn) 2 £Ce”t(9 qd, Gn) as ng — oo uniformly over 6 € ©, Gce”t P 0% as ng — oo. Further, if 0* € int(©),

we have \/TT(QZ?';L —6%) 4 N(0, V), where we define Vet 2 Ia 1CaIa L
(1 — a)Bg, [Fhrn (¥ — Eq, [Fge,0a¥]) (¢ — Eq, [0 ¥0])T]
+ aEQd [7:3* 1]( An [TG* wa] 11n [,’:g";aw]EQn [fg*;al/’]T),
Co 2 By [7pn (1 — By, [ 0] (¥ — Bg [75-,0¥)) T,

a4 () \a
(@)

Eqo[(Z)°]"

(1>

T

provided that T, is invertible. Here, note that 75, () =

In particular, this result recovers the asymptotic convergence of MLE for oo = 1, and generalizes the analysis of GlobalGISO
of (Shah et al., 2023) beyond when g, is the uniform distribution.

C.3. f-CondNCE

Theorem C.3 (f-CondNCE: asymptotic guarantee). Let é}ozi be a solution of

Hcond ;. Acond
0%y € arggélélﬁf (9).
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Ifﬁjp"“d(ﬁ) RS £;°”d(9) as ny — 0o uniformly over 6 € 0, é??j 2 0% as ng — oo. Further, if * € int(©), we have
\ /nd(é}e;‘; - 0%) A N(0, f/JCP”d), where we define fi}"”d = f;léfi_l,

Ty £ By aymioler 108 £ (00 ) () — (y)) () — (y))T],
Cr 2 Eqyaymtylo [Eam,s (00 )2 (0(@) — ¥(1)) (0 (@) — (1)),

provided that Z; is invertible. Here, pg = pp(w,y) and fc(cl)zd’f(p) 2 o7 " (p™Y) + p2f" (p).

D. Finite-Sample Guarantees

For the finite-sample analysis of the regularized NCE estimators, we invoke the result of Negahban et al. (2012):

Theorem 4.4 (Negahban et al., 2012, Corollary 1). Let z1, ..., zn be i.i.d. samples drawn from a distribution p(2). Let
ho(2) be a convex and differentiable function parameterized by 0 € ©. Let L, (0) = L S°" | ho(2;) denote the empirical

objective function. Define !
0, € arg m@in{ﬁn(e) + )\nR(H)}, 9)
where \,, is a regularization penalty and R: © — R is a norm over ©. Let §* € argming E,,(.) [ho(2)]. Assume that

1. The regularization penalty A, satisfies Ay > 2R* (VoL (0%)), where R*: ©* — R> is a dual norm of R over the
dual space ©F;

2. The empirical objective 0 — ﬁn(9) satisfies a restricted strong convexity condition at 0 = 0* with curvature k > 0,
e, Mg g (0,60%) > k|6 — 0*||3.

Then, the estimator 0,, in Eq. (9) satisfies

~ An
16, —0%]]2 < 3?77&2-

D.1. f-NCE

Theorem 4.1 (f-NCE: finite-sample guarantee). Pick a strictly convex function f: R, — R. Define

po(z),  sup pg(w))

A .
; = inf
(pmln7pmax) ( :CEX,QE@X]R v JJEX’QEGXR

and define the quantities in Eq. (5) accordingly. For r € {d,n}, define
e = Amin (Eq, [Y90T]).

Let "™ be such that

find,ma

ance, R . n PN
Gf,nd’nn € arg ggg{ﬁfce(a 44, qn) + /\ndm"R(Q)}

for some A\, 1, > 0. Then, for any A > 0 and § € (0,1), there exists a choice of An, n, such that ||9A;C§d7i -0l <A
with probability > 1 — 6, provided that for each r € {d,n},

(B(l) 2

n — Q( ax{ nce,f,r)2’y722;2’y722*;oo max
r = m
A2 N+ Vel i)

nce, f,n"'min,n
7%;2wfrlnax log i
(Adin,r)? 5 )
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We need to show two properties. First, the empirical gradient Vgﬁ}ce(ﬁ) is nearly zero at § = 6* with high probability
(Proposition D.1). Second, the empirical Hessian vgﬁgfe(e) has a strictly positive curvature (i.e., exhibiting restricted
strong convexity) at § = 0* with high probability (Proposition D.2).

Proposition D.1 (Vanishing gradient). (c¢f (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
de€(0,1),e>0,

IV6LF(0")lmax < €
2wrznax(Bn(cle),f,r)2
62

with probability > 1 — 6, if n, > log P for eachr € {d,n}.

Proof. Recall from Lemma B.3 that

VoL*(0) = %Ead [Wpof" (o)) + Eaq, [¥p31" (po)).

Therefore, we have

E[@giﬁ}ce(ﬁ*)] = 0y, LT°(07) = 0.

1 S, .
Since [;(x)€ ncgfd(pe( N < Ymax B ncz_ .a and [¥;(z)€ ncg palpa())] < wmaxB.EcZ,f,n’ by Hoeffding’s inequality and
union bound, we have

nd€2

202, (B )2)+2pr( 2wmax?nncefn>2)_5’

nce, f,d

2
P(| 95, LF(67)| 2 ) < 2exp(~

. 292 (B )2 292 (B )2 . . . .
if ng > =2 reld” Jog 2 and n,, > 2 reeln Jog 2. By taking a union bound over p different coordinates of 6, we

conclude the proof. O

Lemma D.1. (cf. (Shah et al., 2021a, Lemma E.1)) Assume Assumption 4.1. Let r be either qq or q,. For any e5 > 0,
max |Es[0ithj] — Ep[hihs]] < e,

with probability > 1 — 6s, if

> e 1, 2"

TLT = .
€ 55,

Proof. Since |¢;(z);(x)| < 12, is a bounded random variable, by Hoeffding’s inequality, we have

2
P [its] — Erlpi)] > 2} < 2exp(— 52

max

Taking a union bound over 4, j € [p] leads to the desired bound. O

Recall that for a function h: © — R, the Bregman divergence is defined as
An(0,00) £ 1(0) = 1(0,) — (Voh(0o),0 — 0,).
Proposition D.2 (Restricted strong convexity). (cf. (Shah et al., 2021a, Proposition E.1)) Under Assumption 4.1,

(2)
1 bn d
Aér}ce(eﬁ 9*) Z Z( sz’ )\mm ,d + bnce ,fsn mln n) ||(9 9*”2

% log =% W foreachr € {d,n}.

min,r

with probability > 1 — 6, if n, >
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Proof. By the intermediate value theorem, there exists £ € {t6 + (1 —¢)0*: ¢t € [0, 1]} such that
A e (0, 0%) = L52(0) — L(0%) — (Vo LF=(6%),0 — %)
= (0 0 TVRLF(©) (0~ 07).
Here, note that ¢ depends on gy and §,,. Let z 2 (1(x), 0 — 6*).

(6 —0%)TVELTE(E) (0 —0%) = %Eqd [22peg (pe)] + Eq, [2%0Z (f" (pe) — g1 (p¢)]

oy @)
nce, f,
> eldp, 122 + b

nce, f,n

E4, [2%]
b(z) J )
= (0= 0")7 (=L [y 4+ 2 B, [007]) (0 — 0).
We can lower bound the quadratic form as follows. The first term can be lower bounded as

(0 — 0*)TEq,[07](6 — 6%)
= (0 — 0")T(E,, [WT] — Eq[00T] + Eq,[97])(0 — 6%)
—Ze 0 )i (Bgy (i) — Equ [1hit3]) (0 — 0%); + (6 — 0")TEq, [T] (0 — 6%)

> —Z 16; — 6%3] - |Eg,[vit;] — Eq,[wits]] - 16; — 0% ] + Amin,allf — 6% 13
ij

(@)

> —€2]|0 = 0* | + Aumin.all0 — 0713

®

> —e277[10 = 0713 + Aminall — 073

1 *
§>\min,d”0 -0 ||§

Amin,d

with probability > 1 — ¢ if ng > w S5z Here, we apply Lemma D.1 in (a), and use the definition
12

of 71,2 to bound ||6 — 0%||; < 71,2||9 9*||2 in (b).

Hence, by a union bound with ¢’ = §/2, with probability > 1 — §, we have

@)
* 1 bnce d 2 *
Bppe(0,6%) = Z(7va Amin.d +bfmi,ﬁn)\min7n>||9 — 0|2,

)\2

min,n

lf nd > ’Yl 2wmax log 4p and nn > 71 Zwmax ].Og D
n,d

Proof of Theorem 4.1. First, note that

R*(VoLF(0")) < 1Re100 [ VoL (") max

by definition of ¥z +.oc. Then, by Proposition D.1, we have HVgﬁ}ce(G*) |lmax < € with probability > 1 — 4, if

o(BWY) 2 r2na 9
( nce, f,r ) X log D

62 (51

ny >
for each r € {d, n}. Given that this event occurs, R*(verj;ce(e*)) < YR+:00€, and thus we set A, < 27r~ o€ to satisfy
the first condition in Theorem 4.4.
I}Iow, given A, > QR*(Vgﬁf}ce(H*)), (Negahban et al., 2012, Lemma 1) implies that R(G;Cfbdnn —0%) < 4AR(0%), i
nceR _ g* c 40. Then, by Proposition D.2, we have

find,nn

Age(6,60%) > w0 — 6%
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with probability > 1 — 6, if n, > S”Ail/l og % for each r € {d, n}, where

(2)
} (bnce,f,d A
4 v

e

R = min,d + nce, f, n>\min,n) .

Now, by taking a union bound with ; = do = §/2, with probability > 1 — §, we have

3AnTR; 6yR+; .
10— 6%l < =mIR2 - TR TRE - A
K K

Ak

with € < g
TR* ;00

~ provided that

1
{72(Br(1c2_ fs r) 7722;27722*;oow?ﬂax lo 4£ 87% Qw;}nax lo %)
A2 85 T, &5

1’1’111] r

n, > max

1
U52(Boed g Vo Vo oo V| i STV 1, 307

2) ? 2
A2(w=102) - Amind + by o Aminn)? 0 Aming Y

= max{

(€]
(Bnce Jfor ) WR;Z’YR* w?nax FY% 2'(/J;1nax } log p2)

=0 (max{ ,
A2(V_1bnce’f,d)\Inin,d + b(z) AInin,n)2 >\I2nln r g

nce, f,n

foreachr € {d,n}.

D.2. a-CentNCE
Lemma D.2 (a-CentNCE: derivatives).

VoLa(0) = By, [-75.' Vo log Foal,

ViLa(0) = Bg o (1 — @)V log Fp.a Ve log 7., — V5 log 7g;a)]-
Define

Cong 2 Cov(y/MaVoLa(8Y))
forng > 1. Then, éa,nd = éafor any ng > 1, where
Co 2 E, [~2(a 'V, log 7g+;a Vo log .., ].
We also define

Lo £ V3L (0%) = Eg [Fgra((1 — a) Vg log g .o Vo log 7l ., — V5 l0g 7ge.a)].

Proof. From Lemma B.4, we have

1
S
= —E4, [0 90,70:0]

= —Eq,[7g (i — Eq, [1i75.0))]-

From this derivative expression, the computation is straightforward.

Eq,[06,75 4]

Corollary D.1 (GISO: derivatives).

Ve Lo(0) = Eq,[~750 (¢ — Eq[u])],

V3 Lo(0) = g, [75:0 (4 — Bq[¥]) (¥ — Eg[yh])T],
0 = Eg,[Fg20 (¥ — Eq[v]) (¥ — Bq[y])T],
Ty = Bqu 750 (4 — Bg[¥]) (v — Eg[])T].
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Proof. From Proposition D.2,

V@Eo (0) =Eg[— To. (]Vg log 7g.0],
Vgﬁo (0) = E,, [7“ (Vg log 79,0 Vg log 7. 0 Ve log 79.0)]
Co = Eqg, [Fq- (]Vg log 7g+,0 Vg log 7j... 0]
Ty = E,, [7“9* 0(Vglog Fgr,0Vg log 7 7“0* — Vg log 7g+.0)]-
Since
’FO;O — exp((@, 1/) B EqW])) e—IEq[log q],
q(x)
v@ IOg 7;0;(] = 7/) - Eq W],
V3 log g0 = 0,
the quantities can be further simplified as stated. O

Corollary D.2 (MLE: derivatives).

VoL1(0) = E, [~V log po),

Vgﬁl() Eqy[— V5 1og pol,
Eqd [V log pox Vg log p}.],

Eqy[— V5 1og po-.

Theorem 4.2 (a-CentNCE: finite-sample guarantee). Pick a € R. Define

(pminvpmax) = ( inf /39;@(37), sup ﬁ@;a(ZE))

T€X,0€0 TEX,0€0
(‘Id(-f) )u
and define the quantities in Eq. (5) for f = fo accordingly. Let pg.., (z) = #{1)], and let
’ an

A = Amin (Bqy [(¥ — Eq, [055+.0]) (¥ — Eq, [1055-.a1)T]),
/\;??rf n £ mm(Eqn [T p9*;a} — Eq, W’Pe*;a] n W’Pe*;a} )-

Let é;e’;de be such that

ncent, R : cent/p.
0 € arg lggg{ﬂa (0;da, qn) + )\ndR(Q)}

o,Ng

for some N\, > 0. Define Ymax.0 = Ymax + |Eq, [¥0G+ .ol max- Then, for any A > 0 and § € (0, 1), there exists a choice
of An, such that Hé;ezzR — 0*||2 < A with probability > 1 — 6, provided that

(1) 2

( { (Bnce,fa,d)27’?%;27721*;oo max, o
ng = Q| max ’
A2( nce Ford ) {(1 — a)rem gt a)cent 12

P)/l meax « lo og = p2
()\cent ) 5

min,d

min,

Proposition D.3 (Vanishing gradient). (c¢f (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
d€(0,1),e>0,
HVG‘Ca(H*)”max <e

2207 (rma+ [Ean (755 , o ] mae
with probability > 1 — 4, if ng > —2n (W Hlff"[wre allmax)” log 6
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Proof. Recall from Lemma D.2 that

VoLa(8) = Eq [~ Vo log osa] = —Eq,[1iga"

Qd[ T@ « ] + EQd [feaal] qn WT’G a]
and it is easy to check that

E[VoLa(0")] = VoLa(0") = —Eq, [0igl] + Eq (7ol [075 0] = 0.
Since |7ZS‘:;(1/%($) —-E

awViTg ) <7 T i, a('(/Jmax + ||Eq, [1/11“9* o) llmax ), by Hoeffding’s inequality, we have
P nd€2
P(| 95, Lal07)] 2 €) < 2exp(~

=4
2(a—1 9
2020 (Y + B, [1075.. ]||max>2)

2(a—1)

; Tmin,a (Ymax+[[Eq [
if ng > : =
proof.

‘/”"9* ] ”nn)c) IOg

2 By taking a union bound over p different coordinates of 6, we conclude the

O
Proposition D.4 (Restricted strong convexity). (cf. (Shah et al., 2021a, Proposition E.1)) Under Assumption 4.1, we have

1
D (0,07 = ol o 51— )N 4+ axzit b0 — 07,
. ey . 8 4. (T,Z}max“l’”]Eqn ["/’7‘ *,Q]Hmax)4 2
with probability > 1 — 8, if ng > —:2 e d)29 i log 2%.

min,

Proof. By the intermediate value theorem, there exists £ € {t6 + (1 —¢)0*: ¢t € [0, 1]} such that

W(0) = Lo(6) — (VoLo(67),0 — 6%)
(0 — 6*)TV2La(€)(0 — 6%).
Define E £ E,, [V7g.,] and W =)

[Y77g., | for shorthand notation. Here, note that £ depends on dq. Recall from
Lemma D.2 that

ViLa(8) = Eq,[F5,"

r@a
(1-

(1 = @) Vg log7p,a Vo log 7., — V3 log7g.)]

OB [F07 (0 — §) W — §)T] + aBg [Fas (9T — 4 ).

Let z 2 (1(x),0 — 6*).

(0~ 0)TV3La(6)(0 — 0%)
= (1 - )Eg [Fn (6 — 0%)T (4 — 9))°] + aBq, 785 11(6 — 0)T(uT — G0 )(6 - 6%)
> (1 - a)FSal JEg, [((0 — 0%)T (1 — )] + aFtiml A 10— 072

= ot {1 — )0 — 0)TEg (v — ) (4 —

OO -0%) + a0 — 0717}
We can lower bound the first term as follows

= = (a)
(6 = 6)TEg,[(v — ) (0 — 9)T](0 = 6%) > —ea|0 — 677 + A5 16 — 673
(b)

> —exiall0 — 0713 + A all0 — 67113

e 13
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Q(wn)ax+‘|Eqn [wre* ]”maX) log Afﬁ‘:; d

with probability > 1 — 4 if ng > — 2 with e = S v
2

similar to Lemma D.1 in (a), and use the definition of ~;.2 to bound ||¢ — 0*||1 < 71,2]|0 — 6%]]2 in (b). Hence, with
probability > 1 — 4, we have

. Here, we apply Hoeffding’s inequality

max,o in,d min,n

Ag (0,07 > 7o) {%(1—Q)A§§nt + e, bio - 073,

877, 2 (Vmax+|Eq, [¥Tg% Hlmas ) 1 2. ]

provided that ng > S
Proof of Theorem 4.2. First, note that

R (VoLa(0")) < 1R-100 V0 La(8") e
by definition of yz+.oc. Then, by Proposition D.3, we have \|V9£a(9*)||max < € with probability > 1 — §y, if

2 mln R (wmax + ||EQn [wTQ* ]||max)2 2p
ng > log
62 (51

Given that this event occurs, R* (VQEQ(H*)) < YR+;00€, and thus we set A, <— 2yg+.oo€ to satisfy the first condition in
Theorem 4.4.

Now, given A, > 2R*(Vg£ (6*)), (Negahban et al., 2012, Lemma 1) implies that R(Hce"tR 0*) < 4AR(0*), i.e.,
gt R _ g* ¢ 40. Then, by Proposition D.2, we have

a,Ng

A ye(6,67) > ]l0 — 0°3

8711;2 (Ymax+Eq, ["/"F(-J* ] Hmax)
Oar )2 log , where

with probability > 1 — §y if ng >
~a—1 1 cent cent 1 ~a—1 cent cent
k=T {5(1—04))\111- g+ A }> —F (1 — @)X |+ a)s

max,o in, min,n 9 max,a in, min,nJS*

Now, by taking a union bound with ; = d; = ¢/2, with probability > 1 — ¢, we have

3AnYR: 6yr~. .
He _ 9*||2 S 'VL’YR,Q _ ’YR ,OO’YR,Q € = A
K

K
with € + 5 Ar , provided that
TR*;00 VR;2

> 72Tm1n « (’L/)max + HEQn ['(/}TO* ]||max)27722;27722*;oo 1 217 8’7%;2(wmax + H]EQn [wfg*;a]”max)[l 1 4172

= max{ A2 &5 (e )2 8 T)
1152750 (Ymax + [y [075- o) Imax) 0 VRei00 20 8712 (Vmax + By 07 o] lmax)t | 4p?
> max{ min, o max qn 0%, max PYR,Q’Y’R ;00 lo £ 7172 max qn 6* ;o) llmax lo i)
- A2 D1 = a)AeTt, + a2 #5 Ot )2 5
2(a—1 -
-0 m(ln a )(wmax + ||EQn [wro* ]||max)27722'27722*;oo 7%;2(wmax + ||EQn [wrg*;a]HmaX)4 1 p2
= ] = ST T e 2 prog 5.
A2 {(1 — a)ASDE  + axeent | (Ain.d)

D.3. f-CondNCE

Theorem 4.3 (f-CondNCE: finite-sample guarantee). Pick a strictly convex function f: Ry — R. Define

Pmin = inf Po (1’7 y)a
(z,y)€supp(gqu(z)(y|z)),0€O
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A
Pmax =

sup po(,y).
(z,y)€supp(gqu(z) 7 (y|z)),0€0

and define the quantities in Eq. (5) accordingly. Let
Ahind 2 Amin Byl (0 () = 9 (1)) (0 (@) = ())T]).
Let é;ozzjn be such that

05ona™ € argmin{ L5 (0: o, 7) + Ao, R(O) |

for some A\, > 0. Then, for any A > 0 and § € (0, 1), there exists a choice of \,, such that ||0cond R _ 0%y < A with
probability > 1 — 6, provided that

)

B ( {(Bgor)ld Jf.d + Bioﬂd f n) 7721-27722*~ 1/’?nax
ng = Q| max ;
A2(bcond ,f»d + bcond s n) ()\(I:r?lnn)

’71;2wmax lo i
Oz S5 )
Here, bgond p.and Bc(o)nd t.c are defined similar to Eq. (5), where the infimum and supremum are taken over (L= Bw2x) jp

Pmax’ Pmin
place of (Pmin, Pmax)-

Proposition D.5 (Vanishing gradient). (c¢f (Shah et al., 2021b, Proposition F.1).) Assume Assumption 4.1. For any
0€(0,1),e>0, .
Vo L™ (0%) max < €

(1) (1)
8wm1x(Bnce f d+Bnce ,fin

with probability > 1 — 0, if ng > > log 2717

Proof. Recall from Lemma B.8 that

VoLF™(0) = Eqyym(olan (0(2) = D) (~Ened .a(0 ") + Euea.a(00))],

and it is easy to check that .
E[Ve L7 (0%)] = VoLF(6%) = 0

Since

( ( ) 1/}1( ))( fncefd( ( )) +§ncef n(Pe (!L'7y)))|
< [ (Wily) — i(@)Ewd palpa (@ )| + [ (ily) — i(@))ESe) 5 nlpo (1))
<2 wmax(Bgzd fd T Bcond i)

by Hoeffding’s inequality and union bound, we have

P(] o, LF°(6")| > €) < 2exp =4,
( 8wmax( cond ,f.d + B(Sor)1d ,f, n)2)

. B +BL, )2 . . . .
if ng > 8 cond J 3 —__cond. ], o) log 2. By taking a union bound over p different coordinates of 6, we conclude the

proof. O

Proposition D.6 (Restricted strong convexity). (c¢f- (Shah et al., 2021a, Proposition E.1)) Under Assumption4.1,
B (0,67) 2 562 1+ 6 DN — 0713

with probability > 1 — 0, if ng > %1 og 2p

min
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Proof. By the intermediate value theorem, there exists £ € {t6 + (1 —¢)0*: ¢t € [0, 1]} such that
Aﬁ?nd (6,6%) = ﬁ(]:cond(o) B ﬁ(}ond(g*) _ <V9ﬁ(}ond(0*>,6 — oY)
= L0 0V TVREP)0 — ).
Here, note that ¢ depends on gg(z)7 (y|z). Let 2 £ (¥(x) — (y), 0 — 0*).

(0 — 0)TVZLE™(€)(0 — 0%) = Egymniyin (€20 1 a(os ) + €21 (pe))27]
> (b2 fat b2 o) Ba@)rla) (2]
= (024 g+ b2 O = 0 gyl [(0(x) — (1)) (W (x) — ()70 — 67).

We can lower bound the quadratic form as follows. The first term can be lower bounded as

(0 — 0) Eaytara oo [062) — 0(0)) (0(2) — $())TI0 — 0%) > —ealld — 0°[12 + X240 — 02

®)
> —ean 16 — 073 + Aszndllo — o3
= X6 - 6713

cond

with probability > 1 — § if ng > ¢"‘ax log ® with €2 = ’\"‘"‘ . Here, we apply Hoeffding’s inequality as in Lemma D.1
in (a), and use the definition of 1.2 to bound ||0 0|1 < 1, 2H9 0* |2 in (D).

Hence, with probability > 1 — §, we have
A goa(6,67) = (bﬁond g HOEN FAS 0 — 6%13,

. 128 2
if g > 27 1og 27 O

Proof of Theorem 4.3. First, note that
R¥(VoLF™(0%)) < 1R 100 VoLF™ (0%l max

by definition of y+,~. Then, by Proposition D.5, we have \|V6ﬁcf°”d (6") |lmax < € with probability > 1 — 4, if

(1)
8¢max( cond ,f,d + Bcond ,fsn )2 1 2p
og —.
€2 01

ng >

Given that this event occurs, R* (vgﬁ;°“d(9*)) < YR#*:00€, and thus we set A,, <— 2y = o€ to satisty the first condition in
Theorem 4.4.

Now, given A, > 2R*(V9[lf}°”d(0*)), (Negahban et al., 2012, Lemma 1) implies that R(H;O:Lj R %) < AR(6%), i

9;023 "R _ §* € 40. Then, by Proposition D.6, we have

A£§?nd(9,e*) > k|6 — 6|3

12871 2¢Indx
(Acond )2

min

with probability > 1 — §y if ng > log , where

) 2) cond
K= §(bcond,f,d + bcond,f,n)/\mln .

Now, by taking a union bound with ; = d5 = §/2, with probability > 1 — §, we have

3\ . 67+ .
He o 0*||2 S nVR;2 _ TR ,oo’yT\’,,Z6 — A
K K
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with € + 6#, provided that
TR* ;00 TR;2
1 1)
> 288(B<Eor)1d,f7d + Béond7f,n)2772€;2772€*;oowr2nax 419 1287%;2w§1ax 1 4p2
na 2 max A%y B e s
min

= max

1 1
{1152(B£°r)1d,f,d+Bc(ozd,f,n>2772z;2772z*;oo1/’r2nax 4p 12870 | @)

2 2 con 0g ) cond
A2(B2) 1 g+ by 2092 5 () 5

cond, f,n
1 1

-0 (max{ (Bcgor)1d,f,d + B(Eozd,f,n)2772?,;2’y72?,*;oow12nax 7%;21/};41&30( } o i)
D200 o+ Bama,pa)?sp)? T ARED? S0

C

min

E. Local NCE for Node-Wise-Sparse MRFs

In this section, we illustrate how one can construct a local version of the NCE principles introduced in the main text
for, e.g., node-wise-sparse Markov random fields (MRFs). The notation herein follows the convention of (Ren et al.,
2021) with modification. We use a boldface notation x = (z1,...,z,) € X C RP for the purpose, and a regular-font
variable x is assumed to be scalar-valued. We assume that the exponential family distribution we consider is described as
¢o(z) = exp(E(x)), where the (negative) energy function is

E(x) £ Orfr(x),

IeT

where F £ {f;: I € Z} for some Z C 2[7! is a collection of basis functions f;: [1.cr & — R, each acting upon subsets
of variables x;. Note that F is often called the sufficient statistics of the model.

To describe a conditional model, for each i € [p], define Z; = {I € Z: i € I}. Then, we have

po(zi|x\;) o do(zi|x\;) = exp(&;(x)),

where

El(X) e Z ejf](X[).

I€T,
We remark that the pseudo-likelihood estimator of Besag (1975) is defined as

ng
0; £ argmin Z log ——————
o0 = polal X))

)

where 6 is a collection of all parameters that affect the node conditional model ¢ (2;|x\;) among all parameters 6.

(n)

For n-th sample x("), let ;~ denote the j-th coordinate of x(™), To apply the f-NCE principle, define the density ratio

model
Vgn ()

for a choice of reference distribution ¢, (). For each node ¢ € [p], we can derive the local f-NCE objective as

po(zilx\)

B, 0) [£5 (0 (i ]x\0); qa (i [%\:), gn(2))]
= ]EQd(x\i)‘In(iEz‘) {Af(qd(x”xv) ¢9($i|x\i)) B (qd($i|x\i))}

Van(xi) " van () van(z:)
- _%me) 1 (po (i [xi))] + Bay e, o (o) [P0 (i 300) [ (Po (i x03)) = f(po (wi]x10)]- (13)

In a similar manner, one can derive the local a-CentNCE, which recovers pseudo-likelihood (Besag, 1975) for « = 1 and
GISO (Vuffray et al., 2016; 2021; Shah et al., 2021a) and ISODUS (Ren et al., 2021) for oo = 0, respectively. We note that
Ren et al. (2021) justified ISODUS only from the stationarity of the objective function at the optimal parameter, while the
connection established here between these interactive screening objectives (ISO) (i.e., GISO and ISODUS) to NCE provides
a natural theoretical justification.

29



A Unified View on Learning Unnormalized Distributions via Noise-Contrastive Estimation

F. Optimization Complexity

F.1. Convexity

Proposition F.1 (f-NCE: convexity). Let g¢(p) = —(pf" (p) + f"(p)). If " (p) > gs(p) > O, then 6 — ﬁgfe(e) is
convex. In particular, 0 — ,cgfe(e) is convex for fiog and fo, for o € [0, 1].

Proof. By Lemma B.3, we have

vzﬁ;°e<9>: Eg,[00Ten ; 4(po)] + Eq [wTEL) 1 (p)].

Hence, if g;(p) > 0 and f"(p) — gs(p) > 0, then Vgﬁncew) is a nonnegative combination of two positive definite matrices,
and so must be positive semidefinite.

It remains to show that the condition holds for all f’s in Table 1. For the asymmetric power score f,(p) = p® with
0 < a < 1, first, it is easy to check that p — f,(p) is convex.

filp)=p""2,
ga(p) = —(pf (p) + fL(p)) = (1 — a)p® 2.

Since go(p) > 0and f7(p) — galp) = ap® 2> 0,0 — Lyce(f) is convex by Lemma F.1. Note that the same calculation
holds for @ € {0, 1}. O

A counter example of convex functions f which do not result in convex objectives is f,(p) for a & [0, 1]. For f-NCE, while
Y(p) = p*2 > 0forany o, g5 (p) = (1 —a)p®? < 0fora >1and o # 2 and f(p) — gy, (p) = ap®~2 < 0 for
a<0.Fora=2,g(p) =—-1<0.

Proposition F.2 (CentNCE: convexity). For a € [0,1], 8 — LE"(6; g4, qn) is convex.
Proof. For o € (0,1), note that we can write

A o— -« a
0 — log Lo(0;qa, gn) = —log(1 — o) +1og Eg,[pg " ()] + log By, [p§ ()]

Here, the second and third terms can be understood as LogSumExp operations applied on the linear function 6 — log py(x),
and the resulting function becomes also convex. For a € {0, 1}, the MLE and GISO objectives are well-known to be
convex. O

The proof of the following proposition is similar as above, and we thus omit the proof.

PropoAsition F.3 (f-CondNCE: convexity). If g (p=)+p3(f"(p) — g (p)) > 0, then 6 — ﬁ°f°“d(9) is convex. In particular,
0 — Ej?“d (0) is convex for fiog and fo for o € [0, 1].

F.2. Smoothness

Under the boundedness assumption, we can show that f-NCE objective function is smooth with probability 1.

Proposition F.4 (Smoothness). (c¢f. (Shah et al., 2021b, Proposition B.1).) Assume Assumption 4.1. 0 ﬁr}ce(ﬁ) isa
smooth function with smoothness constant

B®
5 nce.fd | p(2)
pwmax( v + Bnce . n)

Proof. Recall from Lemma B.3 that
An 1 2 2
VELY(0) = SEa[TEn 1a(po)] + Eq,[00TER (o))
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By GerSgorin’s theorem (Horn & Johnson, 2012, Theorem 6.1.1), the largest eigenvalue of a matrix is upper bounded by the
largest absolute row sum or column sum. Therefore, we have

Amax (VELE(0)) < mjaxz | 9,0, L(6)]
1
< max 37 (B, [0t o (o))l + B [0i03602 1. (o)

Z 1 2 2
S m,a‘X w?ﬂ&x (7 Sup gr(]c()a’f)d (;09) + Sup gr(mg,f’n(p)>
J PRGN z,0

(2)
Bnce,f,d
v nce, f,n

< mbfnax( + B2 ) O

We note that Shah et al. (2021b, Lemma 3.1) shows that the projected gradient descent algorithm returns an e-optimal solution
for Global GISO in polynomial optimization complexity, based on the similarly established smoothness of GlobalGISO. We
can establish a similar optimization complexity guarantee, but we omit the statement.

G. Experiments

In this section, we present a preliminary empirical evaluation of a selected set of estimators on a synthetic data, following a
setting in (Shah et al., 2023, Section 5.1). We consider a unnormalized exponential family model

oo(w) 2 exp(aT0a),
where 6 € RP*P for z € [—1, 1]P. The data generating distribution is chosen as the model with 6 = ¢* defined as

1

VP
0 otherwise.

@Zjé ifit=1,orj=1,ort =y,

The samples were generated by brute-force sampling by discretizing each axis by 100 bins. We generated N =
10° samples for p € {11,13,15,17,19} and computed the estimates for each estimator with varying sample size
{0.04N,0.08N,...,0.64N}. We repeated the experiments with random subsamples for 5 times for each configuration.

Assuming the parameter space © is bounded under the Frobenius norm, we consider NCE estimators regularized by the
Frobenius norm and optimized via gradient descent. We used a regularization weight \,, = 102 and a learning rate p = 0.1
across all settings, except for the f,-NCE estimator, where we used 7 = 1.0. Each optimization was run for 1000 gradient
steps. As shown in Figure 2, the selected estimators exhibit an empirical convergence rate of n~'/2. However, we observed
that the f;-NCE estimator (asymmetric log NCE; see Table 1) and the CNCE estimator did not display convergent behavior,
despite the theoretical guarantees available for this example. This discrepancy highlights the need for further investigation
into the empirical behavior of various estimators, particularly in high-dimensional settings.

a-CentNCE (o = 0.5)

LogNCE Asymmetric Power (o) NCE (« = 0.25) Asymmetric inverse log NCE
s s
=~ ~
~
> SS S
S . <
~2 ~ ~o &~
~ S ~ k. ~
& SO o~ ~ “e

a So e S ~ . ~ » ~ -
= ~ ~ £ SES ~ = ~ ~ =
By S > ~ ~ 5 ~ ~ P
ol <~ &~ ) DN . o L ~ )
| ~ I ~ I ‘\ 1
@ [ \. @ }\\ \\4 @ \\\' S @
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-p = 13, 07 RN | #p =13, n 08 \\I ~ 1
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Figure 2. Convergence rate of different NCE estimators.
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