
• Unnormalized model 𝜙! 𝐱 ≝ exp −𝐸! 𝐱
• Data distribution 𝑞" 𝐱
• Noise distribution 𝑞# 𝐱  (typically Gaussian)

• Idea: match density ratios 
!! 𝐱
!" 𝐱

≈ #$# 𝐱
!" 𝐱

For a strictly convex function 𝑓 and 𝜈 > 0, (Pihlaja et al., 2010)

(𝑓-NCE obj.)	 ℒ$#%& 𝜙!, 𝑐 ≝ 𝔼'! 𝐱 Δ$
𝑞" 𝐱
𝜈𝑞# 𝐱

,
𝑐𝜙! 𝐱
𝜈𝑞# 𝐱

− (const. )

Note: Can be unbiasedly estimated by samples from 𝑞" 𝐱  and 𝑞# 𝐱
Caveat: Need to choose 𝑞# 𝐱  carefully

We propose and study TWO variants
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Unnormalized Distributions
(a.k.a. Energy-Based Models (EBMs)) 
Are Flexible Probabilistic Models

TL;DR: We unify various methods for learning EBMs via a family of NCE principles 
and establish finite-sample rates for exponential family distributions

Variant 1. 𝜶-Centered NCE

Application scenarios: graphical models (Markov random fields), 
physical modeling (Ising models), causal modeling, image modeling, …

cf. noise contrastive estimation, score matching, 
interaction screening objectives, pseudo maximum likelihood

𝑝% 𝐱 ∝ exp −𝐸% 𝐱
“energy”

canonical example: 
exponential family
𝐸! 𝐱 = −𝜃⊺𝜓 𝐱

𝐱

𝐸! 𝐱

Low energy
(= high density)

High energy
(= low density)

Challenge: Unknown Normalization
Flexibility comes at the cost of not knowing the 
normalization constant (a.k.a. partition function) 

𝑍! ≝	 Aexp −𝐸! 𝐱 𝑑𝐱	 𝑝! 𝐱 =
exp −𝐸! 𝐱

𝑍!
⇒ Can’t apply maximum likelihood estimation (MLE)!

Some known approaches
• Noise-contrastive estimation (Gutmann & Hyvarinen, 2010)
• Score matching (Hyvarinen, 2012)
• Contrastive divergence (Hinton, 2002)
• Variants and other proposals in some specific settings 

(pseudo likelihood (Besag, 1975), 
interaction screening (Vuffray et al., 2016), …)

Q. Is there a unifying principle?

Noise Contrastive Estimation (NCE) 
Is A Unifying Principle!

𝜌

𝑓(𝜌)

𝜌! 𝜌

Δ" 𝜌 , 𝜌!

Bregman divergence

Variant 2. 𝒇-Conditional NCE
• Consider 𝑓0 𝜌 = 1"23

0 023 𝛼 ∉ 0,1  (“asymmetric power”)
• Define a normalized model (which we call “𝛼-centered model”)

I𝜙!;0 𝐱 ≝
𝜙! 𝐱
𝑍0 𝜃

, where	 𝑍0 𝜃 ≝ 𝔼'# 𝐱
𝜙! 𝐱
𝑞# 𝐱

0 3/0

   such that it’s 𝛼-centered: 𝔼'# 𝐱
67$;" 𝐱
'# 𝐱

0
= 1

(𝛼-CentNCE obj.)	 ℒ0%&#8 𝜙! ≝ ℒ$"
#%& I𝜙!;0, 1

• 𝑞#(𝐱), so “conditional NCE” (Ceylan and Gutmann, 2018) was proposed 
• Conditional distribution 𝜋 𝐲 𝐱  (ex: 𝐲 = 𝐱 + 𝜖𝐯, 𝐯 ∼ 𝒩(𝟎, I))

• Idea: match “joint” density ratios
!! 𝐱 &(𝐲|𝐱)
!! 𝐲 &(𝐱|𝐲)

≈ $# 𝐱 &(𝐲|𝐱)
$# 𝐲 &(𝐱|𝐲)

• We extend CondNCE to 𝑓-CondNCE in the same way as from NCE to 𝑓-NCE
• For Gaussian 𝜋 𝐲 𝐱 = 𝒩(𝐲|𝐱, 𝜖9I)), Ceylan and Gutmann (2018) argued

lim
:→<

(CondNCE) = (Score Matching)

Takeaway 1
𝛼-CentNCE unifies 
MLE, MC-MLE (Geyer, 1994), and
GlobalGISO (Shah et al., 2023) as 
limiting instances

• Takeaway 2: However, we reveal that, for any convex 𝑓:
 (1) This is only true in the population limit;
 (2) With finite samples, 𝒇-CondNCE is dominated
        by statistical noise as 𝜖 → 0 
        (so NOT equivalent to SM)

Takeaway 3. Finite-Sample Analysis
• For exponential family 𝜙! 𝐱 = exp 𝜃⊺𝜓 𝐱 , 

we analyze the finite-sample performance of the 
estimators 𝑓-NCE, 𝛼-CentNCE, 𝑓-CondNCE

• Most are first convergence rate guarantees for the 
considered estimators

• This is thanks to our unifying framework
• Idea: Adapt the convergence rate analysis of 

GlobalGISO (Shah et al., 2023)

• Remark: We can also extend this unification to 
local models (e.g., sparse Markov random fields), 
which unifies pseudo likelihood (Besag, 1975), and ISO 
(Vuffray et al., 2016; 2021; Shah et al., 2021a; Ren et al., 2021)


