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TL;DR: We unify various methods fo

and establish finite-sample rates for exponential family distributions

Unnormalized Distributions

(a.k.a. Energy-Based Models (EBMs))
Are Flexible Probabilistic Models

Po(X) eXP(—L*;egQ)

canonical example:
exponential family

Eo(x) = —0'9(x)
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Application scenarios: graphical models (Markov random fields),
physical modeling (Ising models), causal modeling, image modeling, ...

X

r learning EBMs via a family of NCE principles

Challenge: Unknown Normalization

Flexibility comes at the cost of not knowing the
normalization constant (a.k.a. partition function)

Some known approaches

Noise-contrastive estimation (Gumann & Hyvarinen, 2010)
Score matChing (Hyvarinen, 2012)

Contrastive divergence (iinton, 2002)

Variants and other proposals in some specific settings
(pseudo likelihood (Besag, 1975);

interaction screening (yffray et al., 2016)r ---)

Q. Is there a unifying principle?

( ) » Unnormalized model ¢g(x) & exp(—Egy(x))

exp(—Ep(x) « Data distribution g4(x)

Zog & —E = d

° fexp( g(x))dx Po(X) Zg * Noise distribution g,(x) (typically Gaussian)

= Can’t apply maximum likelihood estimation (MLE)! + Idea: match density ratios 44 (X) ~ cho(x)
qn(X) qn(X)

cf. noise contrastive estimation, score matching,
interaction screening objectives, pseudo maximum likelihood

Noise Contrastive Estimation (NCE)

For a strictly convex function f and v > 0, (pinjaja et al., 2010)

(f-NCE obj.)  Lf*(¢g, ) € Eq, ) [Af ( 9a(x) ccpg(x))] — (const.)

V(X)) vay (%)

Note: Can be unbiasedly estimated by samples from g4(x) and q,(x)
Caveat: Need to choose q,(X) carefully

« Consider f,(p) = ap

* Define a normalized model (which we call “a-centered mo

1) (a & {0,1}) (“asymmetric power")

an M x)(y|x x)(y|x
@Q,Q(x) def qbz((;; where Z,(0) & (Eqn(x) K(CI;:((;))) D * lIdea: match “joint” density ratios ngy;ng:yi ~ 22&;”&1:}3
such that it's a-centered: Eq_pg (fﬁe;a(X))a] —1 « We extenc? CondNCE to f-CondNCE in the same way as from NCE to f-NCE
! qn (X)  For Gaussian (y|x) = N (y|x,€])), Ceylan and Gutmann (2018) argued
(a-CentNCE obj.) LS (¢g) erfe(ég;a, 1) lel_r)r(l)(CondNCE) = (Score Matching)
Objectives o =0 =3 a=1 Takeaway 1 * Takeaway 2: However, we reveal that, for any convex f:
£ NCE ﬁj};&?*“‘:q"“‘)gﬁf] ‘ﬁcé\/? |+ Ealy/ 52 Eullos 51+ Eulial a-CentNCE unifies (1) This is only true in the population limit;

(Pihlaja et al., 2010)) (Pihlaja et al., 2010; Riou-Durand & Chopin, 2018))

(Liu et al., 2021))

¢>
an] Eqq[log Z_r;] + log Eq, [?;_:]

(MLE (Fisher, 1922),

MC-MLE (Geyer, 1994, Jiang et al., 2023))

o-CentNCE [ ]
(GlobalGISO
(Shah et al., 2023))

MWERMVED

* gn(x), so “conditional NCE" (¢eyian and Gutmann, 2018) Was proposed
del”) + Conditional distribution n(ylx) (ex: y=x+¢€ev, v~ N(0,]))

MLE, MC-MLE (Geyer, 1994) and
GlobalGISO (Shah et al., 2023) 95

limiting instances

(2) With finite samples, f-CondNCE is dominated
by statistical noise as € —» 0
(so NOT equivalent to SM)

Takeaway 3. Finite-Sample Analysis

For exponential family ¢g(x) = exp(8'(x)),

we analyze the finite-sample performance of the
estimators f-NCE, a-CentNCE, f-CondNCE

Most are first convergence rate guarantees for the
considered estimators

This is thanks to

Idea: Adapt the convergence rate analysis of

GlobalGISO (Shah et al., 2023)

Remark: We can also extend this unification to
local models (e.g., sparse Markov random fields),

which unifies pseudo likelihood (gecag 1975), and 1SO
(Vuffray et al., 2016; 2021; Shah et al., 2021a; Ren et al., 2021)



