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1 Recap: Maximum Likelihood Estimation

Consider observations 𝑦1 , . . . , 𝑦𝑁 generated i.i.d. from a data generating distribution 𝑝y(·). In the
lecture, we learned that for discrete alphabets, the maximum likelihood estimator (MLE)

𝑥̂ML ∈ arg max
𝑥

1
𝑁

𝑁∑
𝑖=1

log 𝑝(𝑦𝑖 ; 𝑥) (1)

can be equivalently viewed as KL divergence minimization

𝑥̂ML ∈ arg min
𝑥

𝐷(𝑝̂y(·) ∥ 𝑝y(·; 𝑥)). (2)

Recall that 𝑝̂y(·) denotes the empirical distribution induced by the observations {𝑦1 , . . . , 𝑦𝑁 }.
Succinctly, we can thus say that the MLE is the M-projection of the empirical distribution onto the
parametric family.
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We can also justify the MLE (1) for a continuous alphabet as an M-projection in an approximate
sense as follows. In the asymptotic limit, we can define the MLE as

𝑥ML ∈ arg min
𝑥

𝐷(𝑝y(·) ∥ 𝑝y(·; 𝑥)). (3)

Since 𝐷(𝑝y(·) ∥ 𝑝y(·; 𝑥)) = −E𝑝y(·)[log 𝑝y(·; 𝑥)] − ℎ(𝑝y(·)), where ℎ(𝑝y(·)) is the differential entropy of
y, it is equivalent to writing

𝑥ML ∈ arg max
𝑥
E𝑝y(·)[log 𝑝y(𝑦; 𝑥)], (4)

since the differential entropy term is irrelevant to the optimization. Now, the MLE (1) with finite
observations can be understood as a finite-sample approximation of the infinite-sample version (4).

The MLE criterion can be used in both scenarios of (1) parameter estimation, i.e., when we are
interested in figuring out 𝑥∗, and (2) distribution fitting, i.e., when we are interested in finding
a parametric distribution 𝑝y(·; 𝑥) closely approximating the data generating distribution 𝑝̂. Note
that the distribution fitting framework becomes extremely popular recently for training generative
models.

Maybe not surprisingly, most of the generative models can be understood via the lens of
divergence matching, beyond the M-projection. In this note, we will provide a quick overview on
the objective functions of a few popular generative models, namely variational autoencoders [4, 5]
and generative adversarial networks [3, 7].

Below, we will use a slightly different notation system from the class. We will use 𝜃, 𝜑 for model
parameters and x for feature vectors (such as images). We will omit the subscript in the distribution,
which was used in the class to denote the random variables that corresponds to a distribution.

2 Variational Autoencoders

Variational autoencoders (VAEs), first proposed by Kingma and Welling [4], are autoencoders learned
by a variational principle, as suggested by its name. In the following, we will explain these two
components in order.

2.1 Autoencoders

Suppose that you are given a high-dimensional datum x ∈ R𝐷 such as image and audio, which is
assumed to be drawn form an underlying distribution 𝑞data(x). Since it is often hard to deal with
such a complex object directly, an important problem in machine learning is how to find a good
low-dimensional embedding, also known as dimensionality reduction or representation learning problem.
A working assumption behind this procedure is the effective dimension of such high-dimensional
modalities is indeed low; this is known as manifold hypothesis; see, e.g., [1].

The autoencoders is proposed as a neural-network-based approach to find such a low-dimensional
representation. Let 𝐿 ≥ 1 be a designated dimensionality. An autoencoder consists of two neural
networks: an encoder f𝜑 : R𝐷 → R𝐿 which encodes a datum x to a latent z = f𝜑(x) ∈ R𝐿, and a
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decoder g𝜃 : R𝐿 → R𝐷 which decodes a latent z ∈ R𝐿 to a reconstruction x̂ = g𝜃(z). The encoder and
decoder are trained to minimize the expected reconstruction error meaured in the ℓ 2

2 -distance:

min
𝜃,𝜑
E𝑝(x)[∥x − 𝑔𝜃( 𝑓𝜑(x))∥22].

In the autoencoder framework, we believe that a good latent representation, i.e., the encoder f𝜑, is
automatically found by trying to minimize the reconstruction error. Conceptually, the decoder only
plays a role as a facilitator to train the encoder.

After all, can we generate images out of a trained autoencoder? Theoretically, the answer is yes.
To see why, note that the data distribution and encoder induces a distribution over the latent:

𝑞𝜑(z) :=
∫

𝛿(z − 𝑓𝜑(x))𝑞data(x)dx.

If we knew how to draw a sample from the distribution z ∼ 𝑞𝜑(z), then its decoding x̂ = f𝜃(z)would
have been distributed close to 𝑞data(x). The problem with this reasoning in practice is that we do
not know how to sample from 𝑞𝜑(z)! This motivates the following question:

Q. Can we train an autoencoder so that 𝑝𝜃(z) is some fixed, easy-to-sample distribution?

2.2 Latent Variable Models and MLE

This leads us to consider a latent variable model, which is defined as a joint distribution over the data
and latent space:

𝑝𝜃(x, z) = 𝑝𝜃(z)𝑝𝜃(x|z).

Here, the prior 𝑝𝜃(z) is often chosen as a fixed distribution such as the standard Gaussian 𝑝(z) =
𝒩(z; 0𝐿 , 𝐼𝐿). In this case, we drop the dependence on 𝜃 in the notation, i.e., 𝑝𝜃(z) = 𝑝(z). The
likelihood 𝑝𝜃(x|z) is parameterized by a spherical Gaussian, whose mean is parameterized by a
decoder neural network g𝜃 : R𝐿 → R𝐷 , i.e.,

𝑝𝜃(x|z) = 𝒩(x; g𝜃(z), 𝜀2𝐼𝐷),

where 𝜀 > 0 is a hyperparameter. Note the Gaussian likelihood model is assumed to let the density
𝑝𝜃(x, z) explicitly computable, that is, one can compute the value of the density 𝑝𝜃(x, z) for any x
and z. After training, the decoding process is assumed to be deterministic, ignoring the Gaussian
noise in 𝑝𝜃(x|z). If we can somehow train this latent variable model so that the induced marginal
𝑝𝜃(x) :=

∫
𝑝𝜃(x, z)dz is close to the data distribution 𝑞data(x), then x̂← g𝜃(z) for z ∼ 𝑝(z) would

emulate x ∼ 𝑞data(x). For now, we disregard the encoder from the previous section.
The first idea you can think of to train the latent variable model may be MLE, which is, in the

population limit, solving

min
𝜃

𝐷(𝑞data(x) ∥ 𝑝𝜃(x)), (5)
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or in the finite-sample regime where we have access to samples {x1 , . . . , x𝑁 } drawn i.i.d. from
𝑞data(x), solving

min
𝜃

1
𝑁

𝑁∑
𝑛=1

log 1
𝑝𝜃(x𝑛)

. (6)

This approach is considered infeasible in practice, since the induced marginal density 𝑝𝜃(x) is hard
to compute by definition, due to the high-dimensional integration over z, similar to the issue with
computing partition functions we learned in the very last lecture.

2.3 Variational Relaxation with Variational Encoder

We now illustrate how we can apply the idea of variational relaxation to circumvent with the
high-dimensional integration. For the relaxation, we introduce a variational encoder, which is a set
of conditional distributions 𝑞𝜑(z|x) for x ∈ R𝐷 . For each 𝜃 (decoder parameter), we wish that each
𝑞𝜑(z|x) fits to the model posterior 𝑝𝜃(z|x) := 𝑝𝜃(x,z)

𝑝𝜃(x) . Starting from the population objective of MLE (5),
we consider the following relaxation:

𝐷(𝑞data(x) ∥ 𝑝𝜃(x)) ≤ 𝐷(𝑞data(x) ∥ 𝑝𝜃(x)) + E𝑞data(x)[𝐷(𝑞𝜑(z|x) ∥ 𝑝𝜃(z|x))] (7)
= 𝐷(𝑞data(x)𝑞𝜑(z|x) ∥ 𝑝𝜃(x)𝑝𝜃(z|x)) (8)
= 𝐷(𝑞data(x)𝑞𝜑(z|x) ∥ 𝑝(z)𝑝𝜃(x|z)) (9)

= E𝑞data(x)𝑞𝜑(z|x)
[
log

𝑞𝜑(z|x)
𝑝(z)𝑝𝜃(x|z)

]
+ E𝑞data(x)[log 𝑞data(x)] (10)

= E𝑞data(x)𝑞𝜑(z|x)
[
log

𝑞𝜑(z|x)
𝑝(z) + log 1

𝑝𝜃(x|z)
]
+ 𝐶 (11)

= E𝑞data(x)
[
𝐷(𝑞𝜑(z|x) ∥ 𝑝(z)) +

1
2𝜀2E𝑞𝜑(z|x)[∥x − g𝜃(z)∥22]

]
+ 𝐶. (12)

Here, (7) follows from the nonnegativity of KL divergence, (8) from the chain rule of KL divergence,
and (9) from the definition of the joint distribution 𝑝𝜃(x, z) and the model posterior 𝑝𝜃(z|x). In (10),
the second term corresponds to the differential entropy of data (assuming that x is continuous),
which is constant with respect to both 𝜃, 𝜑, and thus we denote it as 𝐶 := −ℎ(𝑞data(x)) in (11).
Note that the expression in (11) is computable given that 𝑞𝜑(z|x) is computable. A more popular
expression for the VAE objective is (12), where we write the first term in terms of the KL divergence
between 𝑞𝜑(z|x) and 𝑝(z), which is often called the KL regularization loss, and the second term is
from the Gaussian likelihood assumption 𝑝𝜃(x|z), which is called the reconstruction loss. The KL
regularization term 𝐷(𝑞𝜑(z|x) ∥ 𝑝(z)) can be sometimes analytically computed for a given (x, z),
which will be the case of the choice illustrated below.

The most standard parameterization for the variational encoder 𝑞𝜑(z|x) is a diagonal Gaussian
of the form

𝑞𝜑(z|x) = 𝒩(z;𝝁𝜑(x), diag(𝝈2
𝜑(x))).

Here, 𝝁𝜑 : R𝐷 → R𝐿 and 𝝈𝜑 : R𝐷 → R𝐿 are the outputs of the encoder. Note that this choice of
parameterization is purely based on a practical consideration, without a guarantee. As each latent
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coordinate is assumed to be conditionally independent, which may not hold for the model posterior
𝑝𝜃(z|x). This, however, provides a convenient choice widely used, is also known as the mean field
approximation. Recall that if the variational encoder cannot perfectly fit the model posterior, the
inequality (7) becomes loose.

2.4 Reparameterization Trick

So far, we have derived the (population) objective for the VAE, namely, from (11),

ℒVAE(𝜃, 𝜑) = E𝑞data(x)𝑞𝜑(z|x)
[
log

𝑞𝜑(z|x)
𝑝(z) + log 1

𝑝𝜃(x|z)
]
. (13)

Given samples drawn from {(x𝑖 , z𝑖)}𝑁𝑖=1 ∼ 𝑞data(x)𝑞𝜑(z|x), the objective function can be estimated in
an unbiased manner by replacing the expectation via a Monte Carlo approximation:

ℒ̂VAE(𝜃, 𝜑) =
1
𝑁

𝑁∑
𝑖=1

(
log

𝑞𝜑(z𝑖 |x𝑖)
𝑝(z𝑖)

+ log 1
𝑝𝜃(x𝑖 |z𝑖)

)
. (14)

In practice, however, we optimize the objective function via a gradient-based algorithm such
as stochastic gradient descent (SGD) or Adam, in which case it is important to have an unbiased
gradient esitmator with low variance. A nontrivial issue arises for the VAE objective, however, when
we wish to take a gradient with respect to the encoder parameter 𝜑, since the expectation is with
respect to a distribution dependent on 𝜑.

To understand the issue more clearly, consider an abstract setting where we wish to compute a
gradient of an expectation of the form E𝑞𝜑(𝑦)[ℎ𝜑(𝑦)], where both the distribution 𝑞𝜑(𝑦) and function
ℎ𝜑(𝑦) depend on the parameter 𝜑. In this case, one can check that

∇𝜑E𝑞𝜑(𝑦)[ℎ𝜑(𝑦)]
(𝑎)
= E𝑞𝜑(𝑦)[∇𝜑 log 𝑞𝜑(𝑦)ℎ𝜑(𝑦) + ∇𝜑ℎ𝜑(𝑦)] ≠ E𝑞𝜑(𝑦)[∇𝜑ℎ𝜑(𝑦)].

This discrepancy implies that the gradient ∇𝜑E𝑞𝜑(𝑦)[ℎ𝜑(𝑦)] cannot be estimated in an unbiased
manner by E𝑞𝜑(𝑦)[∇𝜑ℎ𝜑(𝑦)]. The unbiased gradient estimator based on the expression in (𝑎) is
known as the REINFORCE estimator in the literature, but it is known to suffer high variance.

As an alternative, Kingma and Welling [4] proposed a clever trick called the reparameterization
trick to come up with a low-variance unbiased gradient estimator. Suppose that drawing a sample
𝑦 ∼ 𝑞𝜑(𝑦) is equivalent to 𝑦 = 𝑡𝜑(𝑣)with 𝑣 ∼ 𝑞(𝑣) for some distribution 𝑞(𝑣) and a function 𝑡𝜑. Then,
we can reparameterize the expectation E𝑞𝜑(𝑦)[·] with E𝑞(𝑣)[·], so that the gradient can be interchanged
with the expectation1:

∇𝜑E𝑞𝜑(𝑦)[ℎ𝜑(𝑦)] = ∇𝜑E𝑝(𝑣)[ℎ𝜑(𝑡𝜑(𝑣))] = E𝑝(𝑣)[∇𝜑ℎ𝜑(𝑡𝜑(𝑣))].

The last expression E𝑝(𝑣)[∇𝜑ℎ𝜑(𝑡𝜑(𝑣))] is the final gradient estimator.
Note that the Gaussian encoder 𝑞𝜑(z|x) is reparameterizable, since z ∼ 𝑞𝜑(z|x) is equivalent to

z = 𝝁𝜑(x) + 𝝈𝜑(x) ⊙ v, where v ∼ 𝑝(v) = 𝒩(v; 0, 𝐼). With this choice of encoder, the gradient can be
automatically computed via autograd, based on the unbiased estimate of the objective function (14).

1Note that changing expectation and a limit operation needs a certain regularity condition such as uniform integrability;
in machine learning practice, it is implicitly assumed to hold by default.
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3 Generative Adversarial Networks

While VAE is an important class of generative models that have been used in many different
applications, it produces rather blurry images compared to some other alternatives, such as
generative adversarial networks (GANs), normalizing flows, and diffusion models. In this note, we
introduce the principle of a family of GANs from a simple variational learning perspective, which
is different from that of VAE.

Similar to VAEs, in the GAN framework, we aim to train a deterministic decoder g𝜃(z) with
prior 𝑝(z) = 𝒩(z; 0, 𝐼𝐿). Unlike VAE that assumes a tractable density model 𝑝𝜃(x, z), GAN does not
assume such model and is thus classified as an implicit density framework. The marginal density
induced by 𝑝(z) and 𝑔𝜃(z) is formally defined as

𝑝𝜃(x) :=
∫

𝛿(x − 𝑔𝜃(z))𝑝(z)dz.

With a choice of divergence function 𝐷(𝑝, 𝑞) defined for distributions 𝑝, 𝑞, we wish to train the
decoder 𝑔𝜃(z) by solving

min
𝜃

𝐷(𝑞data(x), 𝑝𝜃(x)).

Specifically, in this note, we explain how to solve this divergence minimization problem for the
𝑓 -divergence [2].

3.1 𝑓 -Divergence

Let 𝑓 : R≥0 → R be a strictly convex function with 𝑓 (1) = 0. For two distributions with densities
𝑝(x) and 𝑞(x), the 𝑓 -divergence between 𝑝 and 𝑞 is defined as

𝐷 𝑓 (𝑝(x) ∥ 𝑞(x)) := E𝑞(x)
[
𝑓
( 𝑝(x)
𝑞(x)

)]
,

if 𝑝 is absolutely continuous with respect to 𝑞, i.e., 𝑝(x) = 0 whenever 𝑞(x) = 0. It is easy to check that
𝑓 -divergence has positive definiteness, i.e., 𝐷 𝑓 (𝑝(x) ∥ 𝑞(x)) = 0 if and only if 𝑝(·) = 𝑞(·).2 For example
𝑓 (𝑟) = 𝑟 log 𝑟 corresponds to 𝐷 𝑓 (𝑝 ∥ 𝑞) = 𝐷(𝑝 ∥ 𝑞), and 𝑓 (𝑟) = − log 𝑟 to 𝐷 𝑓 (𝑝 ∥ 𝑞) = 𝐷(𝑞 ∥ 𝑝).
Another important example is 𝑓 (𝑟) = 𝑟 log 𝑟 − (𝑟 + 1) log(𝑟 + 1), which corresponds to the Jensen–
Shannon divergence

𝐷 𝑓 (𝑝 ∥ 𝑞) = 𝐷JS(𝑝 ∥ 𝑞) := 𝐷
(
𝑝



 𝑝 + 𝑞

2

)
+ 𝐷

(
𝑞



 𝑝 + 𝑞

2

)
.

3.2 Variational Principle for 𝑓 -Divergence

Recall that in VAE, the variational relaxation was based on the nonnegativity of KL divergence,
which is essentially a consequence of Jensen’s inequality, or even the convexity of a certain function

2To see this, note that we have

𝐷 𝑓 (𝑝(x) ∥ 𝑞(x)) ≥ 𝑓
(
E𝑞(x)

[ 𝑝(x)
𝑞(x)

] )
= 𝑓 (1) = 0,

by Jensen’s inequality. Since 𝑓 is strictly convex, the equality holds if and only if 𝑝(·) = 𝑞(·).
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at the lowest level. Again, we can derive a variational principle from the first principle, i.e., the
convexity of 𝑓 .

Let 𝑓 : R≥0 → R be a differentiable convex function. Then, by the definition of convexity, we
have

𝑓
( 𝑞data(x)
𝑝𝜃(x)

)
≥ 𝑓 (𝑟) + 𝑓 ′(𝑟)

( 𝑞data(x)
𝑝𝜃(x)

− 𝑟
)

for any 𝑟 ≥ 0, for each x; here, the equation holds if and only if 𝑟 =
𝑞data(x)
𝑝𝜃(x) . Equivalently, for any

function 𝑟𝜓 : 𝒳 → R≥0,

𝑓
( 𝑞data(x)
𝑝𝜃(x)

)
≥ 𝑓 (𝑟𝜓(x)) + 𝑓 ′(𝑟𝜓(x))

( 𝑞data(x)
𝑝𝜃(x)

− 𝑟𝜓(x)
)

holds for any x. Taking an expectation on both sides with respect to 𝑝𝜃(x), we have

𝐷 𝑓 (𝑞data(x) ∥ 𝑝𝜃(x)) = E𝑝𝜃(x)
[
𝑓
( 𝑞data(x)
𝑝𝜃(x)

)]
≥ E𝑝𝜃(x)

[
𝑓 (𝑟𝜓(x)) + 𝑓 ′(𝑟𝜓(x))

( 𝑞data(x)
𝑝𝜃(x)

− 𝑟𝜓(x)
)]

= E𝑞data(x)[ 𝑓 ′(𝑟𝜓(x))] + E𝑝𝜃(x)[ 𝑓 (𝑟𝜓(x)) − 𝑟𝜓(x) 𝑓 ′(𝑟𝜓(x))].

Note that the inequality holds with equality if and only if 𝑟𝜓(·) = 𝑞data(·)
𝑝𝜃(·) , i.e., when 𝑟𝜓(x) exactly

matches the density ratio 𝑞data(x)
𝑝𝜃(x) . Hence, maximizing the lower bound with respect to 𝑟𝜓(·) can be

understood as fitting the density ratio model to the underlying ratio. This leads to the following
variational characterization of the 𝑓 -divergence:

𝐷 𝑓 (𝑞data(x) ∥ 𝑝𝜃(x)) ≥ max
𝜓

{
E𝑞data(x)[ 𝑓 ′(𝑟𝜓(x))] + E𝑝𝜃(x)[ 𝑓 (𝑟𝜓(x)) − 𝑟𝜓(x) 𝑓 ′(𝑟𝜓(x))]

}
.

Note that the inequality becomes tight if the function 𝑟𝜓(·) is expressive enough to capture the true
density ratio.

Finally, taking the minimization over 𝜃, we obtain

min
𝜃

𝐷 𝑓 (𝑞data(x) ∥ 𝑝𝜃(x)) ≥ min
𝜃

max
𝜓

{
E𝑞data(x)[ 𝑓 ′(𝑟𝜓(x))] + E𝑝𝜃(x)[ 𝑓 (𝑟𝜓(x)) − 𝑟𝜓(x) 𝑓 ′(𝑟𝜓(x))]

}
.

The minimax optimization problem on the right hand side is the well-known 𝑓 -GAN objective [7].
We note that while the standard arguments for the variational lower bound for 𝑓 -divergence are

based on Fenchel duality [6, 7], in this note we derive from an even simpler principle, which is the
definition of differentiable convex functions. This is much easier to state and understand, covering
most, if not all, of the interesting examples.

Here, the density ratio model 𝑟𝜓(·) plays a role of the variational encoder 𝑞𝜑(z|x) in VAE. If we
define

𝐷𝜓(x) :=
𝑟𝜓(x)

1 + 𝑟𝜓(x)
∈ [0, 1],

it is the standard parameterization of the auxiliary variable popularly known as a discriminator.
With this parameterization and for 𝑓 (𝑟) = 𝑟 log 𝑟 − (1 + 𝑟) log(1 + 𝑟), it recovers the most famous
vanilla GAN [3].
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