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1 Introduction

You may remember that, in the very beginning of the class, Prof. Wornell showed Emin Martinian’s
machine1. If you tried the game yourself, you would have found that it is quite hard to beat the
machine! As we are now equipped with the notion of “universal prediction”, we are ready to peek
and understand the behind the scene of Emin’s RoShamBo machine.

In this session, we will introduce how a universal prediction scheme can be turned into a
sequential decision maker for e.g., RoShamBo machine, along with a guarantee. We will then
learn a special universal prediction scheme deployed in Emin’s RoShamBo machine, which was

1https://web.mit.edu/6.7800/www/rps.html
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originally developed for universal compression by Lempel and Ziv in 1978. This will demonstrate
how information theory, especially compression side of story, is tightly connected to the theory of
online learning.

For what is to be developed, we extend the definition of universal prediction beyond i.i.d.
processes. Consider observations 𝑥1 , . . . , 𝑥𝑛 generated from a data generating distribution 𝑝(𝑥𝑛).
Recall the definition of universal prediction from the lecture:

Definition 1. Let 𝑝(𝑥𝑛) ∈ 𝒫 be a distribution for data x𝑛 , where 𝒫 is a class of distributions. A
distribution 𝑞(𝑦𝑛) is said to be universal if, as 𝑛 → ∞,

max
𝑝∈𝒫

𝐷(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)) = 𝑜(𝑛). (1)

2 Bayesian Decision Theory

In the standard decision theoretic setup, we consider an action space 𝒜, outcome space 𝒳, and loss
function ℓ (𝑎, 𝑥) : 𝒜 ×𝒳 → R≥0. The player chooses an action 𝑎 ∈ 𝒜, the nature reveals an outcome
𝑥 ∈ 𝒳, and the player suffers loss of ℓ (𝑎, 𝑥).

Example 2 (𝑀-ary prediction). Set 𝒜 = 𝒳 = {1, . . . , 𝑀} and ℓ (𝑎, 𝑥) = 1{𝑎 ≠ 𝑥}.

Example 3 (RoShamBo machine). Set 𝒜 = 𝒳 = {R,P,S} and ℓ (𝑎, 𝑥) as in Table 1.

𝒜 \ 𝒳 R P S

R 0 +1 -1
P -1 0 +1
S +1 -1 0

Table 1: Loss function for RoShamBo.

Example 4 (Probability assignment). Set 𝒜 = 𝒫𝒳 for some finite alphabet 𝒳 and ℓ (𝑎, 𝑥) = log 1
𝑎(𝑥) .

Note that all the development with this setting (i.e., under log loss) recovers the universal prediction setting
we study in the lectures.

2.1 Bayes Loss and Bayes Action

If we assume that x ∼ 𝑝(𝑥), it is reasonable to consider the expected loss Ex∼𝑝(𝑥)[ℓ (𝑎, x)] of an action 𝑎

with respect to 𝑝, as a measure of goodness of actions. We define the best action under this criterion

𝑎∗B(𝑝) := arg min
𝑎∈𝒜
Ex∼𝑝(𝑥)[ℓ (𝑎, x)]

and call it the Bayes action. The minimum expected loss

𝐿∗B(𝑝) := Ex∼𝑝(𝑥)[ℓ (𝑎∗B(𝑝), x)]

is called the Bayes loss. We remark that as a function of 𝑝, 𝐿∗B(𝑝) is concave.
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Example 5 (𝑀-ary prediction).

𝑎∗B(𝑝) = arg max
𝑥∈𝒳

𝑝(𝑥),

𝐿∗B(𝑝) = 1 − max
𝑥∈𝒳

𝑝(𝑥).

Example 6 (Probability assignment).

𝑎∗B(𝑝) = 𝑝,

𝐿∗B(𝑝) = 𝐻(𝑝).

2.2 Regret and Generalized Divergence

If we were given the underlying distribution 𝑝(𝑥) of nature’s outcome, we could play the Bayes
action 𝑎∗B(𝑝). In practice, however, most likely we do not know which distribution generates the
nature’s outcome. If we play some action 𝑏, we define the regret of playing 𝑏 compared to the best
action as

𝑅(𝑏, 𝑝) := Ex∼𝑝(𝑥)[ℓ (𝑏, x) − ℓ (𝑎∗B(𝑝), x)].

In particular, if we played the Bayes action with respect to some other distribution 𝑞 against 𝑝 is

Δ(𝑝 ∥ 𝑞) := Ex∼𝑝(𝑥)[ℓ (𝑎∗B(𝑞), x) − ℓ (𝑎∗B(𝑝), x)] (= 𝑅(𝑎∗B(𝑞), 𝑝)).

2.2.1 Minimax Regret

In practice, we can assume that the distribution 𝑝 belongs to a certain class of distributions 𝒫,
which we call the model class in the lectures. The minimax regret in this case is

min
𝑏∈𝒜

max
𝑝∈𝒫

𝑅(𝑏, 𝑝).

Under some regularity conditions, for any 𝑏 ∈ 𝒜, there exists a distribution 𝑞 such that 𝑏 = 𝑎∗B(𝑞),
and thus we can write

𝑅(𝑏, 𝑝) = 𝑅(𝑎∗B(𝑞), 𝑝) = Δ(𝑝 ∥ 𝑞).

One sufficient condition is the following, which holds for all the examples we consider in this note.

Assumption 7. |𝒳| < ∞ and 𝑎 ↦→ ℓ (𝑎, 𝑥) is convex for any 𝑥 ∈ 𝒳.

Under Assumption 7, we can thus rewrite the minimax regret as follows:

min
𝑏∈𝒜

max
𝑝∈𝒫

𝑅(𝑏, 𝑝) = min
𝑞∈𝒫𝒳

max
𝑝∈𝒫

Δ(𝑝 ∥ 𝑞) (2)

= min
𝑞∈𝒫𝒳

max
𝑤∈𝒫𝒫

E𝑤(𝑝)[Δ(p ∥ 𝑞)].

Here, 𝑤(𝑝) is a weight distribution over the model class 𝒫. Further, if the min and max can be
swapped (which needs to be proved), we finally have

min
𝑏∈𝒜

max
𝑝∈𝒫

𝑅(𝑏, 𝑝) = max
𝑤∈𝒫𝒫

min
𝑞∈𝒫𝒳
Ep∼𝑤(𝑝)[Δ(p ∥ 𝑞)].
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Provided that this analysis holds under certain conditions, the inner term min𝑞∈𝒫𝒳 Ep∼𝑤(𝑝)[Δ(p ∥ 𝑞)]
can be viewed as a generalized mutual information, and the minimax value can be understood as a
generalized capacity. In this case, we could have developed a tool for bounding the generalized
capacity as we studied universal prediction (under log loss).

2.2.2 Bounding Minimax Regret via Universal Predictor

For a bounded loss function, however, we may not need to develop a separate theory! That is, we
can reuse the toolkit developed for universal prediction (under log loss) to come up with a universal
decision maker. The key observation is the following lemma, which is a simple consequence of
Pinsker’s inequality.

Lemma 8. Let ℓmax := max𝑎,𝑥 ℓ (𝑎, 𝑥). Then,

Δ(𝑝 ∥ 𝑞) ≤ 2ℓmax

√
2𝐷(𝑝 ∥ 𝑞).

The proof can be found in Appendix. As an immediate corollary of this lemma and (2), we have:

Corollary 9. If Assumption 7 holds and ℓmax < ∞, then

min
𝑏∈𝒜

max
𝑝∈𝒫

𝑅(𝑏, 𝑝) = min
𝑞

max
𝑝∈𝒫

Δ(𝑝 ∥ 𝑞) ≤ 2
√

2ℓmax

√
min
𝑞

max
𝑝∈𝒫

𝐷(𝑝 ∥ 𝑞).

This implies that if 𝑞 is universal with respect to 𝒫, then we can play the Bayes action according
to 𝑞 to perform universally well in the decision theoretic setup.

2.3 Sequential Decision Making

So far, we assumed that the game between player and nature is single-round. We need to extend
this to a multi-round setting to come up with a sequential decision making scheme.

We now assume that the nature generates an outcome sequence 𝑥1 , . . . , 𝑥𝑛 according to a certain
distribution 𝑝(𝑥𝑛). Our loss function for the multi-round setting is the cumulative loss

ℓ (𝑎𝑛 , 𝑥𝑛) :=
𝑛∑
𝑖=1

ℓ (𝑎𝑖 , 𝑥𝑖),

Note that in ℓ (𝑎𝑛 , 𝑥𝑛), the action 𝑎 is an abstract notation for a strategy as a sequence of functions.
That is, for each round 𝑖, 𝑎𝑖 is indeed a function of history 𝑥 𝑖−1, i.e., 𝑎𝑖 = 𝑎𝑖(𝑥 𝑖−1).

Under this stochastic assumption, the best possible strategy is the Bayes action 𝑎𝑛 = 𝑎∗B(𝑝(𝑥𝑛))
and the minimum loss achieved is 𝐿∗B(x𝑛) := 𝐿∗B(𝑝(𝑥𝑛)).2 If the distribution 𝑝(𝑥𝑛) is known, the
action at round 𝑖 induced by the Bayes action 𝑎∗B(𝑝(𝑥𝑛)) is

(𝑎∗B)𝑖(𝑥
𝑖−1) := 𝑎∗B(𝑝(𝑥𝑖 |𝑥

𝑖−1)) = arg min
𝑎𝑖∈𝒜
E𝑝(𝑥𝑖 |𝑥 𝑖−1)[ℓ (𝑎𝑖 , x𝑖)].

2This notation is analogous to another conventional notation of entropy 𝐻(x) for x ∼ 𝑝(𝑥).
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One special case is when the underlying distribution is i.i.d., i.e., 𝑝(𝑥𝑛) = 𝑝(𝑥1) · · · 𝑝(𝑥𝑛), in which
case the Bayes loss is given as 𝐿∗B(x𝑛) = 𝑛𝐿∗B(x1).

As we developed in Section 2.2, under the same condition as in Corollary 9, the minimax
cumulative regret can be written as

𝜌∗𝑛 := min
𝑏𝑛

max
𝑝∈𝒫

𝑅(𝑏𝑛 , 𝑝(𝑥𝑛)) = min
𝑞∈𝒫𝒳

max
𝑝∈𝒫

Δ(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)). (3)

To conclude that we can plug-in a universal predictor (or universal probability assignment) 𝑞(𝑥𝑛)
with respect to the model class 𝒫 to bound the minimax regret for a sequential decision problem
with bounded loss, we need a similar argument as in Lemma 8. We remark that applying Lemma 8
directly by viewing the cumulative loss ℓ (𝑎𝑛 , 𝑥𝑛) as a single loss function leads to vacuous bound,
since we can only guarantee that sup𝑎𝑛 ,𝑥𝑛 ℓ (𝑎𝑛 , 𝑥𝑛) ≤ 𝑛ℓmax, which leads to

1
𝑛
Δ(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)) ≤ 2

√
2ℓmax

√
𝐷(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)).

Indeed, we can prove a much tighter bound, whose proof is deferred to Appendix.

Lemma 10.
1
𝑛
Δ(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)) ≤ 2

√
2ℓmax

√
1
𝑛
𝐷(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)).

As a corollary, we have the following theorem:

Theorem 11. Suppose that Assumption 7 holds and ℓmax < ∞. If the model class 𝒫 admits a universal
predictor under log loss, then it also admits one under ℓ (𝑎, 𝑥). In particular, if 𝑞(𝑥𝑛) is universal with respect
to 𝒫, then (𝑎∗B(𝑞(𝑥𝑖 |𝑥 𝑖−1)))𝑛

𝑖=1 guarantees a diminishing worst case regret against 𝒫 as 𝑛 → ∞.

3 Examples of Universal Predictors (Under Log Loss)

So far, we learned that a universal predictor (under log loss) can be used as a surrogate for a true
data generating distribution, to play the Bayes action with respect to it. This is a simple and elegant
plug-and-play strategy for sequential decision making. We now turn our attention to the particular
universal strategy used by Emin’s RoShamBo machine.

Note that the model class 𝒫 is a design choice from the designer (sequential decision maker),
capturing the uncertainty in the data generating process. On one extreme, if the designer simply
assumes that the true data distribution is an i.i.d. categorical process with unknown parameter,
then we know that the KT mixture is the minimax optimal universal predictor with convergence
rate of the normalized cumulative regret 𝑂( log 𝑛

𝑛 ). The downside of this simple model class is that if
the true distribution does not belong to the small class, there is a risk that the resulting worst-case
regret may not vanish, as we learned in the lectures. On the other extreme, the particular strategy
used Emin’s RoShamBo machine is a universal predictor with respect to a class of ergodic stationary
processes, which is really huge class of distributions. While such a wide coverage is attractive, the
cost comes in an extremely slow rate 𝑂( log log 𝑛

log 𝑛
), as we will see.

To motivate the universal procedure for stationary processes, we will first consider the i.i.d.
processes and stationary Markov processes.
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3.1 Simpler Cases

We revisit the simplest case of i.i.d. sequences.

Example 12 (i.i.d. processes). Suppose that x1 , . . . , x𝑁 ∼ i.i.d. 𝑝(𝑥;𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 for 𝑥 ∈ {0, 1},
where 𝜃 ∈ [0, 1]. As we do not know the underlying 𝜃 that generates the data, the idea is to take a mixture
with respect to :

𝑞𝑤(𝑥𝑛) :=
∫ 1

0
𝑝𝜃(𝑥𝑛)𝑤(𝜃)d𝜃.

For exponential family models as in this case, we know that Jeffreys’ prior is the optimal weight distribution,
which is in this particular case the Beta distribution with parameters (1

2 ,
1
2 ). The resulting mixture is

specifically called the Krichevsky–Trofimov mixture

𝑞KT(𝑥𝑛) :=
∫ 1

0
𝑝𝜃(𝑥𝑛)Beta

(
𝜃; 1

2 ,
1
2

)
d𝜃 = 𝐵

( 𝑛∑
𝑖=1

𝑥𝑖 +
1
2 , 𝑛 −

𝑛∑
𝑖=1

𝑥𝑖 +
1
2

)
,

and the sequential distribution is

𝑞KT(𝑥𝑖 = 1|𝑥 𝑖−1) = 𝑞KT(𝑥 𝑖−11)
𝑞KT(𝑥 𝑖−1)

=

∑𝑛
𝑖=1 𝑥𝑖 + 1

2
𝑛 + 1 .

We know that the KT mixture satisfies

max
𝜃∈[0,1]

𝐷(𝑝(𝑥𝑛 ;𝜃) ∥ 𝑞(𝑥𝑛)) = 1
2 log 𝑛 + 𝑂(1).

A slightly more advanced example is a stationary Markov process.

Example 13 (Stationary Markov processes). Suppose now that x1 , . . . , x𝑛 |x0 ∼ 𝑝(𝑥𝑛 |𝑥0;𝜃0 , 𝜃1), where
the distribution factorizes as

𝑝(𝑥𝑛 |𝑥0;𝜃0 , 𝜃1) :=
𝑛∏
𝑖=1

𝑝(𝑥𝑖 |𝑥𝑖−1;𝜃0 , 𝜃1) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 ;𝜃𝑥𝑖−1).

That is, the symbol 𝑥𝑖 at time 𝑖 is generated from a Bernoulli distribution with parameter 𝜃𝑥𝑖−1 . The process
is thus fully characterized by two unknown parameters 𝜃0 and 𝜃1. We can apply the same idea of mixture for
i.i.d. processes by parsing the sequence based on the previous symbols into two parts:

[𝑛] := {1, . . . , 𝑛} =
⊔

𝑦∈{0,1}
𝐼𝑦(𝑥𝑛),

where, for 𝑦 ∈ {0, 1},
𝐼𝑦(𝑥𝑛) := {𝑖 ∈ [𝑛] : 𝑥𝑖−1 = 𝑦}.

Since (𝑥𝑖)𝑖∈𝐼𝑦(𝑥𝑛) is an i.i.d. process with parameter 𝜃𝑦 , we can apply the KT mixture on each sequence
separately, and the resulting KT probability is

𝑞KT(𝑥𝑛 |𝑥0) := 𝑞KT((𝑥𝑖)𝑖∈𝐼0(𝑥𝑛))𝑞KT((𝑥𝑖)𝑖∈𝐼1(𝑥𝑛)),
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which guarantees

max
𝜃0 ,𝜃1∈[0,1]

𝐷(𝑝(𝑥𝑛 |𝑥0;𝜃0 , 𝜃1) ∥ 𝑞KT(𝑥𝑛 |𝑥0)) = 2 · 1
2 log 𝑛 + 𝑂(1).

This can be extended to stationary 𝑘-th order Markov processes in a straightforward manner, and the resulting
minimax regret would scale as

max
𝜃𝑠∈[0,1],𝑠∈{0,1}𝑘

𝐷(𝑝(𝑥𝑛 |𝑥0
−𝑘−1; {𝜃𝑠 : 𝑠 ∈ {0, 1}𝑘) ∥ 𝑞KT(𝑥𝑛 |𝑥0

−𝑘−1)) = 2𝑘 · 1
2 log 𝑛 + 𝑂(1).

The scaling behavior 2𝑘 is intuitive as we manage the sequence with 2𝑘 separate states independently. If the
alphabet size is 𝑚, the regret behaves as 𝑚𝑘 (𝑚−1)

2 log 𝑛 + 𝑂(1).

3.2 Lempel–Ziv Incremental Parsing

We now introduce the Lempel–Ziv incremental parsing (LZ parsing) to deal with stationary
processes. As we do not know the order of the underlying process unlike the 𝑘-th order Markov
processes, we need an adaptive parsing as we observe more symbols. The LZ parsing incrementally
parses the sequences so that the newly parsed phrase has never been observed in the past. For example, a
binary sequence 𝑥𝑛 = 0000000000 is parsed as 0, 00, 000, 0000. Another example is 𝑥𝑛 = ABRACADABRA,
which is parsed into A,B,R,AC,AD,AB,RA.

How can we assign probability via this procedure? The basic idea of the LZ scheme is to assign
equal probability over all possible new phrases given the observations. More precisely, suppose that
we have observed 𝑐 complete phrases 𝑦𝑐(= 𝑥𝑛), and let 𝑃(𝑦𝑐) := (all possible new phrases given 𝑦𝑐).
Then the LZ scheme assigns probability

𝑞LZ(𝑦𝑐+1 |𝑦𝑐) =
1

|𝑃(𝑦𝑐)| for 𝑦𝑐+1 ∈ 𝑃(𝑦𝑐).

For example, if 𝑥𝑛 = 000000 as before, then we have 𝑐 = 3 complete phrases, and 𝑃(𝑦3) =

{1, 01, 001, 0000, 0001},

𝑞LZ(𝑦4 |𝑦3) = 1
5 for 𝑦3 ∈ 𝑃(𝑦𝑐) = {1, 01, 001, 0000, 0001}.

In general, by an inductive argument, we can easily show that

|𝑃(𝑦𝑐)| = (𝑚 − 1)𝑐 + 𝑚,

for 𝑚-ary processes. Therefore, for 𝑥𝑛 = 𝑦𝑐 with 𝑐 complete phrases, the probability assigned is

𝑞LZ(𝑦𝑐) =
𝑐∏

𝑖=1

1
(𝑚 − 1)𝑖 + 𝑚

.

Given complete phrases, how should we assign probability over the next symbol? You can add
the probabilities of all the phrases in 𝑃(𝑦𝑐) that start with the symbol. It can be done similarly for a
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sequence with incomplete phrase. Suppose that a given sequence is of the form 𝑦𝑐𝑧, where 𝑧 is a
phrase that does not belong to 𝑃(𝑦𝑐). Then, we can define a new set

𝑃(𝑦𝑐𝑧) := {𝑦 ∈ 𝑃(𝑦𝑐) : 𝑦 starts with 𝑧}.

Then, given the history 𝑦𝑐𝑧, the next symbol probability is

𝑞LZ(𝑥 |𝑦𝑐𝑧) =
1

|𝑃(𝑦𝑐𝑧)| for 𝑥 such that 𝑧𝑥 ∈ 𝑃(𝑦𝑐𝑧).

It is easy to show that this procedure is consistent with the probability assignment over complete
phrases.

We now conclude the session with the universality guarantee of the LZ process. Let

𝒫𝑘 := (the class of stationary 𝑘-th order binary Markov processes).

Theorem 14. For any 𝑝 ∈ 𝒫𝑘 and 𝑥𝑛 ∈ {0, 1}𝑛 with 𝑐 complete phrases,

log
𝑝(𝑥𝑛)
𝑞LZ(𝑥𝑛)

≤ 2 log{𝑒(𝑐 + 2)} + 𝑐
(
log

{
𝑒
(𝑛
𝑐
+ 1

)}
+ 𝑘

)
.

In particular,
1
𝑛

max
𝑥𝑛

log
𝑝(𝑥𝑛)
𝑞LZ(𝑥𝑛)

= 𝑂
( log log 𝑛

log 𝑛

)
.

The second part of the theorem is based on the following upper bound on the number of
complete phrases for a sequence of length 𝑛.

Lemma 15. Let 𝑚 = |𝒳| and let 𝑐(𝑥𝑛) be the number of complete phrases in 𝑥𝑛 . Then, we have

(1 − 𝜀𝑛)
√

2𝑛 ≤ 𝑐(𝑥𝑛) ≤ (1 + 𝜀𝑛)𝑚(𝑚 − 1) log
(
𝑚

𝑛

log 𝑛

)
,

where 𝜀𝑛 = 𝑜(1) as 𝑛 → ∞.

Finally, we can show that the LZ process is universal with respect to any stationary random
process:

Theorem 16. For every stationary ergodic random process (x𝑛)∞𝑛=1 ∼ P,

lim sup
𝑛→∞

1
𝑛

log
𝑝(x𝑛)
𝑞LZ(x𝑛)

≤ 0 P-almost surely.

In particular,

lim
𝑛→∞

1
𝑛
𝐷(𝑝(𝑥𝑛) ∥ 𝑞LZ(𝑥𝑛)) = 0.
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A Proof of Lemma 8

Proof. Consider

Δ(𝑝 ∥ 𝑞) =
∑
𝑥∈𝒳

𝑝(𝑥)(ℓ (𝑎∗B(𝑞), 𝑥) − ℓ (𝑎∗B(𝑝), 𝑥))

=
∑
𝑥∈𝒳

(𝑝(𝑥) − 𝑞(𝑥))(ℓ (𝑎∗B(𝑞), 𝑥) − ℓ (𝑎∗B(𝑝), 𝑥)) +
∑
𝑥∈𝒳

𝑞(𝑥)(ℓ (𝑎∗B(𝑞), 𝑥) − ℓ (𝑎∗B(𝑝), 𝑥))

=
∑
𝑥∈𝒳

(𝑝(𝑥) − 𝑞(𝑥))(ℓ (𝑎∗B(𝑞), 𝑥) − ℓ (𝑎∗B(𝑝), 𝑥)) − Δ(𝑞 ∥ 𝑝)

≤
∑
𝑥∈𝒳

(𝑝(𝑥) − 𝑞(𝑥))(ℓ (𝑎∗B(𝑞), 𝑥) − ℓ (𝑎∗B(𝑝), 𝑥))

≤
∑
𝑥∈𝒳

|𝑝(𝑥) − 𝑞(𝑥)|(|ℓ (𝑎∗B(𝑞), 𝑥)| + |ℓ (𝑎∗B(𝑝), 𝑥)|)

≤ 2ℓmax
∑
𝑥∈𝒳

|𝑝(𝑥) − 𝑞(𝑥)|

≤ 2ℓmax

√
2𝐷(𝑝 ∥ 𝑞).

Here, the last inequality follows from Pinsker’s inequality ∥𝑝− 𝑞∥1 :=
∑

𝑥 |𝑝(𝑥)− 𝑞(𝑥)| ≤
√

2𝐷(𝑝 ∥ 𝑞)
for two distributions 𝑝 and 𝑞. □

B Proof of Lemma 10

Proof. Consider

1
𝑛
Δ(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)) = 1

𝑛

𝑛∑
𝑖=1
E𝑝(𝑥 𝑖)[ℓ (𝑎∗B(𝑞(𝑥𝑖 |x

𝑖−1)), x𝑖) − ℓ (𝑎∗B(𝑝(𝑥𝑖 |x
𝑖−1)), x𝑖)]

(𝑎)
=

1
𝑛

𝑛∑
𝑖=1
E𝑝(𝑥 𝑖−1)

[
E𝑝(𝑥𝑖 |x𝑖−1)[ℓ (𝑎∗B(𝑞(𝑥𝑖 |x

𝑖−1)), x𝑖) − ℓ (𝑎∗B(𝑝(𝑥𝑖 |x
𝑖−1)), x𝑖)]

]
=

1
𝑛

𝑛∑
𝑖=1
E𝑝(𝑥 𝑖−1)

[
Δ(𝑝(𝑥𝑖 |x𝑖−1) ∥ 𝑞(𝑥𝑖 |x𝑖−1))

]
(𝑏)
≤ 2

√
2ℓmax

1
𝑛

𝑛∑
𝑖=1
E𝑝(𝑥 𝑖−1)

[√
𝐷(𝑝(𝑥𝑖 |x𝑖−1) ∥ 𝑞(𝑥𝑖 |x𝑖−1))

]
(𝑐)
≤ 2

√
2ℓmax

√√
1
𝑛

𝑛∑
𝑖=1
E𝑝(𝑥 𝑖−1)

[
𝐷(𝑝(𝑥𝑖 |x𝑖−1) ∥ 𝑞(𝑥𝑖 |x𝑖−1))

]
(𝑑)
= 2

√
2ℓmax

√
1
𝑛
𝐷(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)).

Here, (𝑎) follows from the tower property of conditional expectation, (𝑏) from Lemma 8 applied to
Δ(𝑝(𝑥𝑖 |x𝑖−1) ∥ 𝑞(𝑥𝑖 |x𝑖−1)) for each 𝑖 = 1, . . . , 𝑛, (𝑐) from Jensen’s inequality using the concavity of
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𝜌 ↦→ √
𝜌, and (𝑑) from the chain rule of KL divergence

𝐷(𝑝(𝑥𝑛) ∥ 𝑞(𝑥𝑛)) =
𝑛∑
𝑖=1
E𝑝(𝑥 𝑖−1)[𝐷(𝑝(𝑥𝑖 |x𝑖−1) ∥ 𝑞(𝑥𝑖 |x𝑖−1))].

This concludes the proof. □
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