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1 An Alternative Proof of Sanov’s Theorem

In the class, we have learned the celebrated Sanov’s theorem, which provides an elegant charac-
terization of large deviation for finite alphabet distributions. In what follows, we let 𝒴 be a finite
alphabet of size |𝒴| = 𝐾. Recall:

Theorem 1 (Sanov’s Theorem). Let 𝒮 ⊂ 𝒫𝒴 be an arbitrary set of distributions, and let 𝑞 ∈ 𝒫𝒴 be
arbitrary. Then

𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
≤ (𝑁 + 1)𝐾 2−𝑁𝐷(𝑝∗ ∥ 𝑞) , (1)

where
𝑝∗ = arg min

𝑝∈𝒮
𝐷(𝑝 ∥ 𝑞) (2)

is the I-projection of 𝑞 onto 𝒮.

As we learned in the class, the standard proof is based on the method of types. In this lecture,
we will derive a similar bound to Sanov’s theorem via minimax redundancy, which is the driving
concept of this course. Interestingly, we can even prove a (slightly) tighter bound as follows.

1

mailto:jongha@mit.edu


Theorem 2. Under the same setting of Theorem 1,

𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
≤ 𝑒𝑜(1)

Γ(1/2)𝐾
Γ(𝐾/2)

( 𝑁
2𝜋

) 𝐾−1
2 2−𝑁𝐷(𝑝∗ ∥ 𝑞). (3)

Note that the Chernoff exponent 𝐷(𝑝∗ ∥ 𝑞) remains the same as expected from the matching
lower bound, the polynomial term (𝑁 + 1)𝐾 becomes tighter as 𝑁 𝐾−1

2 .

1.1 Pointwise Minimax Redundancy

Before we prove the theorem, we recall the notion of minimax redundancy. For a class of distributions
indexed by a parameter 𝑥 ∈ 𝒳, we define the (mean) minimax redundancy as

𝑅̄∗
𝑁 := min

𝑏
max
𝑥∈𝒳

𝐷(𝑝(𝑦𝑁 ; 𝑥) ∥ 𝑏(𝑦𝑁 )).

In the proof below, we will require a stronger notion, which we call the pointwise minimax redundancy:

𝑅∗
𝑁 := min

𝑏
max
𝑥∈𝒳

max
𝑦𝑁

log
𝑝(𝑦𝑁 ; 𝑥)
𝑏(𝑦𝑁 )

.

Note that the expectation with respect to 𝑝(𝑦𝑁 ; 𝑥) is replaced by the maximum over all possible
sequence 𝑦𝑁 . This notion arises when we would like to analyze the extremely worst-case scenario,
assuming that the sequence 𝑦𝑁 can be an arbitrary sequence.

Note that, clearly, 𝑅∗
𝑁
≥ 𝑅̄∗

𝑁
. For 𝐾-ary i.i.d. processes, i.e., when {𝑝(𝑦𝑁 ; 𝑥) : 𝑥 ∈ 𝒳} is the class

of all i.i.d. distributions, Xie and Barron [8] showed that

𝑅∗
𝑁 =

𝐾 − 1
2 log 𝑁

2𝜋 + log Γ(1/2)𝐾
Γ(𝐾/2) + 𝑜(1), (4)

𝑅̄∗
𝑁 =

𝐾 − 1
2 log 𝑁

2𝜋𝑒 + log Γ(1/2)𝐾
Γ(𝐾/2) + 𝑜(1). (5)

Remarkably, 𝑅̄∗
𝑁

and 𝑅∗
𝑁

are of the same order for this special case. These results have profound
implications in information theory and statistics; see [8] for more details. Specifically, we will invoke
Eq. (4) in the proof below.

1.2 Proof of Theorem 2

Proof of Theorem 2. Without loss of generality, we assume that 𝑞 ∉ 𝒮, since 𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
= 1 and the

right hand side is at least 1 otherwise. In this case, 𝑝̂(·; y ) ∈ 𝒮 implies that

𝐷(𝑝̂(·; y ) ∥ 𝑞) ≥ arg min
𝑝∈𝒮

𝐷(𝑝 ∥ 𝑞) = 𝐷(𝑝∗ ∥ 𝑞) =: 𝑟. (6)
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We note that

𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
= P𝑞

(
𝑝̂(·; y ) ∈ 𝒮

)
(𝑎)
≤ P𝑞

(
𝐷(𝑝̂(·; y ) ∥ 𝑞) ≥ 𝑟

)
= P𝑞

( 1
𝑁

log
𝑝̂(y𝑁 ; y )
𝑞(y𝑁 )

≥ 𝑟
)

= P𝑞

( 𝑝̂(y𝑁 ; y )
𝑞(y𝑁 )

≥ 2𝑁𝑟
)
,

where (𝑎) follows from (6). We now introduce an arbitrary probability 𝑏(𝑦𝑁 ) over the sequence 𝑦𝑁 ,
and continue from the last inequality to obtain

𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
≤ P𝑞

( 𝑏(y𝑁 )
𝑞(y𝑁 )

≥ 2𝑁𝑟 𝑏(y𝑁 )
𝑝̂(y𝑁 ; y )

)
(𝑏)
≤ P𝑞

( 𝑏(y𝑁 )
𝑞(y𝑁 )

≥ 2𝑁𝑟 min
𝑦̃𝑁

min
𝑝∈𝒫𝒴

𝑏(𝑦̃𝑁 )
𝑝(𝑦̃𝑁 )

)
(𝑐)
≤ E𝑞

[ 𝑏(y𝑁 )
𝑞(y𝑁 )

]
2−𝑁𝑟 max

𝑦̃𝑁
max
𝑝∈𝒫𝒴

𝑝(𝑦̃𝑁 )
𝑏(𝑦̃𝑁 )

(7)

(𝑑)
= 2−𝑁𝑟 max

𝑦̃𝑁
max
𝑝∈𝒫𝒴

𝑝(𝑦̃𝑁 )
𝑏(𝑦̃𝑁 )

.

Here, (𝑐) follows from Markov’s inequality, and (𝑑) since E𝑞[ 𝑏(y
𝑁 )

𝑞(y𝑁 ) ] = 1. Since this holds for any

arbitrary distribution 𝑏(𝑦𝑁 ), we can take a minimization over 𝑏 ∈ 𝒫𝒴𝑁 and get

𝑄
{
𝒮 ∩ 𝒫𝒴

𝑁

}
≤ 2−𝑁𝑟 min

𝑏
max
𝑦̃𝑁

max
𝑝∈𝒫𝒴

𝑝(𝑦̃𝑁 )
𝑏(𝑦̃𝑁 )

= 2−𝑁𝑟+𝑅∗
𝑁 ,

where we define

𝑅∗
𝑁 := min

𝑏
max
𝑥∈𝒳

max
𝑦̃𝑁

log
𝑝(𝑦̃𝑁 ; 𝑥)
𝑏(𝑦̃𝑁 )

,

which is the pointwise minimax redundancy for 𝐾-ary i.i.d. probabilities. Invoking the established
result on the pointwise minimax redundancy in Eq. (4), we conclude the proof. □

1.3 Remarks on the Optimal Strategy

Though we did not need to know what probability 𝑏 ∈ 𝒫𝒴𝑁 achieves the pointwise minimax
redundancy in Eq. (4), it is informative to note the (near) optimal strategy. Recall from the class that
the optimal strategy for the minimax redundancy in Eq. (5) is in the form of a mixture distribution:
for a distribution over 𝑤(·) over 𝒳, let

𝑏𝑤(𝑦𝑁 ) :=
∫

𝑝(𝑦𝑁 ; 𝑥)𝑤∗(𝑥)𝑑𝑥.
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For the i.i.d. processes, the optimal mixture distribution 𝑤∗ is the Dirichlet distribution with
concentration parameter 𝜶 = (1

2 , . . . ,
1
2 ), which results in the so-called KT mixture

𝑞KT(𝑦𝑁 ) :=
∫

𝑝(𝑦𝑁 ; 𝑥)𝑤(𝑥)d𝑥 =
𝐵(k(𝑦𝑁 ) + 𝜶)

𝐵(𝜶) ,

which is attributed to Krichevsky and Trofimov [2]. Here, for 𝑦𝑁 ∈ [𝐾]𝑁 , define 𝑘𝑖(𝑦𝑁 ) :=∑𝑁
𝑡=1 1{𝑦𝑡 = 𝑖} = (number of 𝑖’s in 𝑦𝑁 )1 and 𝐵(·) is the multivariate beta function.2

Interestingly, if 𝜶 = (1, . . . , 1), the Dirichlet distribution becomes the uniform distribution.
This is a maximally ignorant prior, but one can check that the uniform mixture only results in a
suboptimal redundancy 𝑂((𝐾 − 1) log𝑁), missing the factor of 1/2. In words, to achieve the optimal
redundancy, we need to put more emphasis on the boundary of the simplex.

A remarkable property of this minimax optimal strategy for the minimax redundancy in Eq. (5)
is that it is also nearly minimax optimal for the pointwise minimax redundancy in Eq. (4). We
note that the (exactly) minimax optimal strategy for the pointwise case is the normalized maximum
likelihood defined as

𝑏NML(𝑦𝑁 ) :=
max𝑥∈𝒳 𝑝(𝑦𝑁 ; 𝑥)∑
𝑦̃𝑁 max𝑥∈𝒳 𝑝(𝑦̃𝑁 ; 𝑥)

.

Note that this is the equalizer. This is well-defined, but due to the normalization constant, it is
often not practical. Fortunately, we can use the KT strategy to enjoy almost the minimax optimal
redundancy even under this scenario; see [8] for more details.

Lastly, we wish to remark the predictive form of the KT mixture distribution, or the mixture
distribution induced by a Dirichlet distribution. Thanks to the conjugacy of the Dirichlet distribution
to categorical distributions, we readily have

𝑞𝑤(· | 𝑦𝑁 ) =
k(𝑦𝑁 ) + 𝜶

𝑁 + 1⊺𝜶
when 𝑤(𝑥) = Dir(𝑥 |𝜶). When 𝜶 = 0, this recovers the maximum likelihood estimate. For positive
vectors 𝜶, it suggests that the prediction should be done with smoothed empirical counts, where 𝜶

can be understood as pseudocounts. To achieve the optimal redundancy, we should perform the
prediction as if there were some pseudocounts for each symbol (even though we have not observed
anything yet), and 0.5 happens to be the optimal smoothing!

2 Confidence Set

Sanov’s bound quantifies the probability of rare events. The story of large deviation is closely
related to the phenomenon of concentration of measures, and we provide this alternative view here.

1As a vector k(𝑦𝑁 ) can be understood as the count vector of all symbols in 𝑦𝑁 .
2Here, for a positive vector 𝜶 ∈ R𝐾>0, we denote the multivariate beta function as

𝐵(𝜶) :=
∏𝐾
𝑖=1 Γ(𝛼𝑖)

Γ(∑𝐾
𝑖=1 𝛼𝑖)

,

where Γ(𝛼) :=
∫ ∞
0 𝑡𝛼−1𝑒−𝑡 d𝑡 (𝛼 > 0) denotes the gamma function.
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Suppose that a 𝐾-ary process y1 , . . . , y𝑁 is drawn i.i.d. from a distribution 𝑝(𝑦𝑛 ;𝝁) with
unknown mean parameter

𝝁 = (E[1{y = 𝑖}])𝐾𝑖=1 = E[ey ].

In this discrete case, we expect the empirical distribution 𝝁̂𝑁 := k(𝑦𝑁 )
𝑁 (i.e., the type of the sequence)

to converge to the true data generating distribution as 𝑁 becomes large. Using the same technique
introduced above in a slightly different manner, we can derive a confidence set for the true data
generating process (or equivalently the mean vector). Formally, for 𝛿 ∈ (0, 1), we say that a
set-valued function 𝒞𝛿(y𝑁 ) is a confidence set for the mean parameter 𝝁 at level (or coverage) 1 − 𝛿, if

P{𝝁 ∈ 𝒞𝛿(y𝑁 )} ≥ 1 − 𝛿.

Recall that we applied Markov’s inequality in Eq. (7) to the random variable 𝑏(y𝑁 )
𝑞(y𝑁 ) . We again

apply Markov’s inequality as

P𝑞
( 𝑏(y𝑁 )
𝑞(y𝑁 )

≥ 1
𝛿

)
≤ 𝛿,

since E𝑞[ 𝑏(y
𝑁 )

𝑞(y𝑁 ) ] = 1 for some 𝛿 > 0 and for any choice of distribution 𝑏(·) ∈ 𝒫𝒴𝑁 . We can rewrite
this inequality as

P𝑞
(
𝐷(𝝁̂𝑁 ∥ 𝑞) ≥ 1

𝑁
log 1

𝛿
+ 1
𝑁

𝑝(y𝑁 ; 𝝁̂𝑁 )
𝑏(y𝑁 )

)
≤ 𝛿.

This implies that if we define

𝐶𝛿(𝑦𝑁 ) :=
{
m ∈ 𝒫𝒴 : 𝐷(𝝁̂𝑁 ∥ m) > 1

𝑁
log 1

𝛿
+ 1
𝑁

𝑝(y𝑁 ; 𝝁̂𝑁 )
𝑏(y𝑁 )

}
, (8)

then 𝐶𝛿(y𝑁 ) is a confidence set with level 1− 𝛿. Geometrically, this confidence set is a KL divergence
ball centered around the empirical mean 𝝁̂𝑁 , where the radius is 1

𝑁 log 1
𝛿 + 1

𝑁

𝑝(y𝑁 ;𝝁̂𝑁 )
𝑏(y𝑁 ) . Note that

this is a meta algorithm, which defines a confidence set for each probability 𝑏 ∈ 𝒫𝒴𝑁 .
Since we do not know the data generating process, it is natural to plug-in the KT mixture

𝑞KT(𝑦𝑁 ), to minimize the radius of the KL ball. If we apply Stirling’s approximation on the second
term 1

𝑁

𝑝(y𝑁 ;𝝁̂𝑁 )
𝑞KT(y𝑁 )

, we can show that, for 𝑁 sufficiently large,

P𝑞
(
𝐷(𝝁̂𝑁 ∥ 𝑞) ≥ 1

𝑁
log 1

𝛿
+ 𝐾 − 1

2𝑁 log𝑁 + 𝑂(1)
)
≤ 𝛿.

We remark that, in the same language, Sanov’s bound can be translated into as

P𝑞
(
𝐷(𝝁̂𝑁 ∥ 𝑞) ≥ 1

𝑁
log 1

𝛿
+ 𝐾

𝑁
log(𝑁 + 1)

)
≤ 𝛿.
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3 Time-Uniform Guarantee

Interestingly, it turns out that we can claim a stronger guarantee for the constructed confidence set,
almost for free. Recall that our key technique so far is simply Markov’s inequality on the random
variable 𝑏(y𝑁 )

𝑞(y𝑁 ) , noting that E𝑞[ 𝑏(y
𝑁 )

𝑞(y𝑁 ) ] = 1. This relation indeed holds in a stronger sense. That is, we

can show that the stochastic process W𝑁 := 𝑏(y𝑁 )
𝑞(y𝑁 ) for 𝑁 ≥ 1 with W0 = 1 is a martingale.

Lemma 3. Suppose that E[ey𝑁 |𝑦𝑁−1] = 𝝁 for any 𝑁 ≥ 1. For any causal gambling strategy,

E𝑞[W𝑁 |𝑦𝑁−1] = W𝑁−1

for any 𝑁 ≥ 1.

The proof is left as an exercise. This states that the sequence of probability ratio is a martingale
sequence. In general, if a sequence (W𝑡)𝑁𝑡=1 with respect to a stochastic outcome y𝑁 satisfies that
E[W𝑁 |y𝑁−1] ≤ W𝑁−1 for any 𝑁 ≥ 1, then it is called supermartingale, and if the inequality holds with
equality it is called martingale. Intuitively, this is a realistic model for gambling in real-world casino,
where the gambling is statistically not favorable to gamblers.

In this case, a stronger bound holds in place of Markov’s inequality. The following inequality is
due to Ville [6].

Theorem 4 (Ville’s inequality). Let (𝑊𝑡)∞𝑡=0 be a nonnegative supermartingale sequence. Then, for any
𝛿 > 0, we have

P
(
sup
𝑡≥1

𝑊𝑡

𝑊0
≥ 1

𝛿

)
≤ 𝛿.

Its proof is based on a simple application of the optional stopping theorem; see, e.g., the linked
note. In words, this states that the probability that a gambler’s wealth against a fair or adversarial
casino (that always results in a (super-)martingale) ever goes beyond a certain threshold 1/𝛿 is at
most 𝛿. Then, we can readily get a time-uniform guarantee as follows for the confidence set (8):
Since

P𝑞
(
sup
𝑡≥1

𝑏(y𝑁 )
𝑞(y𝑁 )

≥ 1
𝛿

)
≤ 𝛿

for any causal strategy 𝑏, we obtain

P𝑞
{
∀𝑡 ≥ 1, 𝝁 ∈ 𝒞𝛿(y 𝑡)

}
≥ 1 − 𝛿.

Note the difference from the previous guarantee without time-uniformity:

∀𝑡 ≥ 1, P𝑞
{
𝝁 ∈ 𝒞𝛿(y 𝑡)

}
≥ 1 − 𝛿.

We note that such a time-uniform confidence set is more suitable for sequential decision making, as
it allows a user to make a decision at any time collecting samples gradually.
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4 Concluding Remarks

The alternative proof of Sanov’s bound here is not available in the literature, but the technique
developed in this note is a simplified and adapted version for Sanov’s bound of that studied by Ryu
and Wornell [4]. The time-uniform confidence sequence has recently gained increasing attention
in the statistics and computer science community, due to its versatility in real-world sequential
decision making problems such as A/B testing, bandits, and election auditing, to name a few.

The universal prediction technique we used in this note can be also applied to constructing
confidence sets for continuous random variables, but it requires to introduce the notion of gambling,
where we will define a martingale process as a sequence of wealth, instead of the probability
ratio 𝑏(y𝑁 )

𝑞(y𝑁 ) . In this case, a good strategy we can again use is the universal portfolio developed by
Cover [1], which is a gambling strategy induced by the KT mixture. We refer an interested reader
to a thought-provoking paper of Waudby-Smith and Ramdas [7], which delved into the idea of
gambling for constructing time-uniform confidence sequence for bounded scalar random variables,
and the paper of Orabona and Jun [3] which proposed to apply Cover’s universal portfolio. Ryu
and Wornell [4] recently extended this framework to vector-valued observations such as categorical
data, probability-valued observations, and bounded-valued observations. The technique can be
also applied to derive a new concentration inequality for nonnegative random variables; see [5].
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