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1 An Alternative Proof of Sanov’s Theorem

In the class, we have learned the celebrated Sanov’s theorem, which provides an elegant charac-
terization of large deviation for finite alphabet distributions. In what follows, we let Y be a finite
alphabet of size || = K. Recall:

Theorem 1 (Sanov’s Theorem). Let S ¢ PY be an arbitrary set of distributions, and let g € PY be
arbitrary. Then

Q{SNPY} < (N +1)f 27 NPkl )
where
p. =argminD(p || q) )
peS

is the I-projection of g onto S.

As we learned in the class, the standard proof is based on the method of types. In this lecture,
we will derive a similar bound to Sanov’s theorem via minimax redundancy, which is the driving
concept of this course. Interestingly, we can even prove a (slightly) tighter bound as follows.
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Theorem 2. Under the same setting of Theorem 1,

o TA/2)K (NS
QSN PY} < o F((K/;) (%) >~ND(p. || ) 3)

Note that the Chernoff exponent D(p. || q) remains the same as expected from the matching
lower bound, the polynomial term (N + 1)K becomes tighter as N 5

1.1 Pointwise Minimax Redundancy

Before we prove the theorem, we recall the notion of minimax redundancy. For a class of distributions
indexed by a parameter x € X, we define the (mean) minimax redundancy as

R}y := minmax D(p(y";x) || b(y™).
xXe

In the proof below, we will require a stronger notion, which we call the pointwise minimax redundancy:

N
;X
R} := minmax maxlog =i x) .
b xeX yN b(yN)
Note that the expectation with respect to p(yN; x) is replaced by the maximum over all possible
sequence y~. This notion arises when we would like to analyze the extremely worst-case scenario,
assuming that the sequence y can be an arbitrary sequence.
Note that, clearly, R}, > R’;\,. For K-ary i.i.d. processes, i.e., when {p(yN ;x): x € X} is the class
of all i.i.d. distributions, Xie and Barron [8] showed that

. _K-1 N r(1/2)K
Ry = —5— log o +log T(K/2) +0(1), 4)
-, k-1 N r'(1/2)K
Ry = 5 log o +log T(K/2) +0(1). (5)

Remarkably, R;\] and R}, are of the same order for this special case. These results have profound
implications in information theory and statistics; see [8] for more details. Specifically, we will invoke
Eq. (4) in the proof below.

1.2 Proof of Theorem 2

Proof of Theorem 2. Without loss of generality, we assume that g ¢ S, since Q{S N 7’1‘\1{ } =1and the
right hand side is at least 1 otherwise. In this case, p(-; y) € S implies that

DpGy) llg) = argrgin D(p |l q9)=D(ps 1l q) =:r. (6)
pe



We note that
Q{Srwy} Pq (;y) € S)

(DG ) 2 7)

(P
<
(1 PN y) Zr)
-5 (2

where (a) follows from (6). We now introduce an arbitrary probability b(y") over the sequence y,
and continue from the last inequality to obtain

b(yN) , byM)
Qfsnei} <F (Q(iN) >2" ﬁ(y{’;y))
b(yN) r b(7N)
IP)q(v/(yN) =2 i P(yN))
b(yN) . pi"N)
<5 Com “55"522’5 b(7Y) 7
N
@ 27N max max )

N pepy b(yN )

by™)
q™) R
arbitrary distribution b(y"), we can take a minimization over b € P¥" and get

Here, (c) follows from Markov’s inequality, and (d) since E4[ ] = 1. Since this holds for any

Y -Nr P(]/ ) —N7r+R},
Q{SOPN}S2 mblnny}gx;relg§ b — o~ Nr+Ry,

7

where we define

) p(iN; x)
Ry : _rrzlnrj?g\;qry}%xlog b(gN) ’

which is the pointwise minimax redundancy for K-ary i.i.d. probabilities. Invoking the established
result on the pointwise minimax redundancy in Eq. (4), we conclude the proof. m]

1.3 Remarks on the Optimal Strategy

Though we did not need to know what probability b € PY " achieves the pointwise minimax
redundancy in Eq. (4), it is informative to note the (near) optimal strategy. Recall from the class that
the optimal strategy for the minimax redundancy in Eq. (5) is in the form of a mixture distribution:
for a distribution over w(-) over X, let

butr™)i= [ P s



For the ii.d. processes, the optimal mixture distribution w* is the Dirichlet distribution with
concentration parameter a = (%, ceey %), which results in the so-called KT mixture

B(k(y™) + a)

acr(yN) = / Pl dr = S22,

which is attributed to Krichevsky and Trofimov [2]. Here, for yN € [K]N, define ki(y") :=
Zi\il 1{y; = i} = (number of i’s in yN)! and B(-) is the multivariate beta function.?

Interestingly, if & = (1,...,1), the Dirichlet distribution becomes the uniform distribution.
This is a maximally ignorant prior, but one can check that the uniform mixture only results in a
suboptimal redundancy O((K — 1) log N), missing the factor of 1/2. In words, to achieve the optimal
redundancy, we need to put more emphasis on the boundary of the simplex.

A remarkable property of this minimax optimal strategy for the minimax redundancy in Eq. (5)
is that it is also nearly minimax optimal for the pointwise minimax redundancy in Eq. (4). We
note that the (exactly) minimax optimal strategy for the pointwise case is the normalized maximum

likelihood defined as

Ny maxyex p(y"; x)
' ZgN maXxeXp(gN)x).

bam (v

Note that this is the equalizer. This is well-defined, but due to the normalization constant, it is
often not practical. Fortunately, we can use the KT strategy to enjoy almost the minimax optimal
redundancy even under this scenario; see [8] for more details.

Lastly, we wish to remark the predictive form of the KT mixture distribution, or the mixture
distribution induced by a Dirichlet distribution. Thanks to the conjugacy of the Dirichlet distribution
to categorical distributions, we readily have

k(yN) + a
N+1lta

when w(x) = Dir(x|a). When a = 0, this recovers the maximum likelihood estimate. For positive

Qw(' | yN) =

vectors a, it suggests that the prediction should be done with smoothed empirical counts, where o
can be understood as pseudocounts. To achieve the optimal redundancy, we should perform the
prediction as if there were some pseudocounts for each symbol (even though we have not observed
anything yet), and 0.5 happens to be the optimal smoothing!

2 Confidence Set

Sanov’s bound quantifies the probability of rare events. The story of large deviation is closely
related to the phenomenon of concentration of measures, and we provide this alternative view here.

1As a vector k(yN ) can be understood as the count vector of all symbols in yN .

2Here, for a positive vector & € RI><0' we denote the multivariate beta function as
T, T(ev)
B(a) := ——
F(Zizl a;)

where I'(a) := fooo ta=1e=t 4t (@ > 0) denotes the gamma function.
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Suppose that a K-ary process yi,...,yn is drawn iid. from a distribution p(y"; u) with
unknown mean parameter

= (E[1{y = i}Di, = Eley].

In this discrete case, we expect the empirical distribution i, := (y ) @

i.e., the type of the sequence)
to converge to the true data generating distribution as N becomes large. Using the same technique
introduced above in a slightly different manner, we can derive a confidence set for the true data
generating process (or equivalently the mean vector). Formally, for 6 € (0,1), we say that a
set-valued function Cs(y) is a confidence set for the mean parameter y at level (or coverage) 1 — 9, if

P{ueCsyM}t=1-5

b(y )

. We again
apply Markov’s inequality as

N
i 5) <2
by)

q0N)
this inequality as

since E,[ ] =1 for some 6 > 0 and for any choice of distribution b(-) € PYN . We can rewrite

X 1 1PN iy

This implies that if we define
LA PN fry)
N Y. N
= :D — 1 _ } ,
Cs(y™) := {m epP (fty || m) > g 5t N ) (8)
then Cs(y™N) is a confidence set with level 1 — 6. Geometrically, this confidence set is a KL divergence

ball centered around the empirical mean fI,;, where the radius is 4 log + + & % Note that

this is a meta algorithm, which defines a confidence set for each probability b € pY".
Since we do not know the data generating process, it is natural to plug-in the KT mixture

ger(yN), KA); minimize the radius of the KL ball. If we apply Stirling’s approximation on the second
1 PO y)

term
ermy grryN) 7

we can show that, for N sufficiently large,

N 1 1 K-1
P, (D(yN Il q) = Nlogg N log N + O(l)) < 6.

We remark that, in the same language, Sanov’s bound can be translated into as

K
(D(yN I q) > log =+ 1 log(N + 1)) <.



3 Time-Uniform Guarantee

Interestingly, it turns out that we can claim a stronger guarantee for the constructed confidence set,
almost for free. Recall that our key technique so far is simply Markov’s inequality on the random
N N
variable 28 N;, noting that E,4[ 22}{ N;] = 1. This relation indeed holds in a stronger sense. That is, we
N
can show that the stochastic process Wy := Zg N; for N > 1 with Wy = 1 is a martingale.

Lemma 3. Suppose that E[e,, |yN "] = u for any N > 1. For any causal gambling strategy,
By [Wnly™ ™1 = Wi
forany N > 1.

The proof is left as an exercise. This states that the sequence of probability ratio is a martingale
sequence. In general, if a sequence (Wt){\i 1 with respect to a stochastic outcome yN satisfies that
E[Wn|yN™!] < Wy_1 forany N > 1, then it is called supermartingale, and if the inequality holds with
equality it is called martingale. Intuitively, this is a realistic model for gambling in real-world casino,
where the gambling is statistically not favorable to gamblers.

In this case, a stronger bound holds in place of Markov’s inequality. The following inequality is
due to Ville [6].

Theorem 4 (Ville’s inequality). Let (W;);2,, be a nonnegative supermartingale sequence. Then, for any

0 > 0, we have

Wy 1
P(sup—t = —) <o.
i1 Wo 0

Its proof is based on a simple application of the optional stopping theorem; see, e.g., the linked
note. In words, this states that the probability that a gambler’s wealth against a fair or adversarial
casino (that always results in a (super-)martingale) ever goes beyond a certain threshold 1/6 is at
most 6. Then, we can readily get a time-uniform guarantee as follows for the confidence set (8):
Since

b(yN) _ 1
P ([sup—=> =] <6
q(tzll)Q(yN) 5)

for any causal strategy b, we obtain
P {Vt > 1,peCs(y")} >1-0.

Note the difference from the previous guarantee without time-uniformity:
Vt>1, P{ueCs(y)} >1-6.

We note that such a time-uniform confidence set is more suitable for sequential decision making, as
it allows a user to make a decision at any time collecting samples gradually.


https://www.stat.cmu.edu/~aramdas/martingales18/L13-Ville's.pdf
https://www.stat.cmu.edu/~aramdas/martingales18/L13-Ville's.pdf

4 Concluding Remarks

The alternative proof of Sanov’s bound here is not available in the literature, but the technique
developed in this note is a simplified and adapted version for Sanov’s bound of that studied by Ryu
and Wornell [4]. The time-uniform confidence sequence has recently gained increasing attention
in the statistics and computer science community, due to its versatility in real-world sequential
decision making problems such as A/B testing, bandits, and election auditing, to name a few.
The universal prediction technique we used in this note can be also applied to constructing
confidence sets for continuous random variables, but it requires to introduce the notion of gambling,
where we will define a martingale process as a sequence of wealth, instead of the probability

ratio Zg Z% In this case, a good strategy we can again use is the universal portfolio developed by

Cover [1], which is a gambling strategy induced by the KT mixture. We refer an interested reader
to a thought-provoking paper of Waudby-Smith and Ramdas [7], which delved into the idea of
gambling for constructing time-uniform confidence sequence for bounded scalar random variables,
and the paper of Orabona and Jun [3] which proposed to apply Cover’s universal portfolio. Ryu
and Wornell [4] recently extended this framework to vector-valued observations such as categorical
data, probability-valued observations, and bounded-valued observations. The technique can be
also applied to derive a new concentration inequality for nonnegative random variables; see [5].
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