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Introduction
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Problem Setting (1)

• A distribution P over X = Rd with density p

- Q. How to characterize a property of a distribution by a single number?

- A. mean, variance, entropy, …

• An one-density functional: for some f : R+ → R,

Tf (p) ≜ EX∼p[f(p(X))] =

∫
f(p(x))p(x) dx

• Estimation: given X1:m ∼ p, how to estimate Tf (p)?
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Problem Setting (2)

• Two distributions P,Q over X = Rd with density p, q

- Q. How to characterize a dissimilarity of the distributions?

- A. KL divergence, f -divergences, integral probability metrics, Wasserstein distance,
maximum mean discrepancy, …

• A two-density functional: for some f : R+ × R+ → R,

Tf (p, q) ≜ EX∼p[f(p(X), q(X))] =

∫
f(p(x), q(x))p(x) dx

• Estimation: given X1:m ∼ p and Y1:n ∼ q, how to estimate Tf (p, q)?

• This talk will focus on the one-density case
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Motivation

• Wish to construct an L2-consistent estimator T̂f (X1:m) of Tf (p), which satisfies

lim
m→∞

EX1:m∼p[(T̂f (X1:m)− Tf (p))2] = 0

• A naive, plug-in solution: given a density estimator p̂(x),

Tf (p) ≈ T̃f (p) ≜
1

m

m∑
i=1

f(p̂(Xi))

• One can plug-in a k-nearest-neighbors (k-NN) density estimator,
but it is NOT consistent for fixed k

• This paper: Construct a class of L2-consistent estimators based on k-NNs
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Using Nearest-Neighbors

• Classification, regression: “your neighbors can tell about you”
• Density (functional) estimation: “how far your neighbors tell how crowded you are at”
• Samples X1:m ≜ {X1, . . . ,Xm} ∼ i.i.d. p
• Given a query point x,

X(k)(x) = X(k)(x;X1:m) ≜ (the k-th nearest neighbor)
rk(x) = rk(x;X1:m) ≜ (the distance from x to the k-th nearest neighbor)

• Intuition:
p(x)× (volume of the k-NN ball at x) ≈ k

m
• The standard k-NN density estimator:

p̂km(x) ≜ k

m× (volume of the k-NN ball at x) =
k

mvdrdk(x)

• Let vd ≜ (volume of the unit ball in Rd)
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A Plug-in Approach

• Recall
p̂km(x) = k

mvdrdk(x)
• Fact: p̂km(x)→ p(x) (weakly consistent) as m→∞ if k →∞ with k = o(m)

• Example: differential entropy (f(p) = ln 1
p )

h(p) ≜
∫
p(x) log 1

p(x) dx

• Let’s build a plug-in estimator with p̂km(x):

h̃k(X1:m) ≜ 1

m

m∑
i=1

log 1

p̂km(Xi)

• For fixed k ∈ N, it is NOT consistent!
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Kozachenko–Leonenko Estimator

• We need to correct its bias…
• The (generalized) Kozachenko–Leonenko estimator [Kozachenko and Leonenko, 1987,

Singh et al., 2003, Goria et al., 2005]:

T̂
(k)
KL (X1:m) = T̃f (p̂km) + ln k −Ψ(k) (1)

=
1

m

m∑
i=1

ln 1

p̂km(Xi)
+ ln k −Ψ(k),

where Ψ(x) ≜ Γ′(x)/Γ(x) denotes the digamma function [Korn and Korn, 2000]
• Fact 1: T̂ (k)

KL (X1:m) is L2-consistent for any fixed k ≥ 1 [Tsybakov and van der
Meulen, 1996, Goria et al., 2005, Gao et al., 2018]

• Fact 2: T̂ (k=1)
KL (X1:m) is minimax-rate-optimal for a certain class of densities [Jiao

et al., 2018]
• Q. Given a general f , how can we build a L2-consistent estimator based on

fixed-k-NNs?
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A Brief History of Bias-Corrected Plug-in Estimators

• In a similar spirit, L2-consistent fixed-k or fixed-(k, l) plug-in estimators with proper
additive or multiplicative bias correction were proposed and analyzed for KL
divergence [Wang et al., 2009], Rényi entropies [Leonenko et al., 2008], Rényi
divergences [Póczos and Schneider, 2011], and several other divergences of a specific
polynomial form [Póczos et al., 2012]:

T̃ aff
f (p̂) = akT̃f (p̂) + bk, (2)

T̃ aff
f (p̂, q̂) = aklT̃f (p̂, q̂) + bkl, (3)

where (ak, bk) and (akl, bkl) determine functional-specific bias correction
• Singh and Póczos [2016] analyzed a bias-corrected estimatorof the following form

T̃b◦f (p̂) =
1

m

m∑
i=1

bkm(f(p̂km(Xi))) (4)

and established L2-consistency for fixed k with convergence rate if there exists a
bias-correcting function bkm that satisfies a strict condition depending on p
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The Proposed Estimators
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Our General Recipe

• Given f and k ≥ 1, define

T̂
(k)
f (X1:m) ≜ 1

m

m∑
i=1

ϕk(Ukm(Xi)), (5)

where we denote a normalized volume of the k-NN ball at x as

Ukm(x) ≜ Uk(x;X1:m) ≜ mvdr
d
k(x)

and choose a function ϕk so that

lim
m→∞

E[T̂ (k)
f (X1:m)] = Tf (p) (asymptotic unbiasedness)
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An Useful Asymptotic Property

• A normalized volume of the k-NN ball at x:

Ukm(x) ≜ Uk(x;X1:m) ≜ mvdr
d
k(x)

• A Gamma random variable U ∼ G(α, β) with shape parameter α > 0 and rate
parameter β > 0 is defined by its density

fα,β(u) ≜
βα

Γ(α)
uα−1e−βu, u > 0

Proposition ⋆

For any k ∈ N, for p-almost every x,

Ukm(x) d→ Uk∞(x) as m→∞,

where Uk∞(x) ∼ G(k, p(x))
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Distribution of the k-NN Distance

Lemma 2.1
The cdf of rkm(x) is

Frkm(x)(r) = Pr{Bm,P(B(x,r)) ≥ k}

Proof.

Frkm(x)(r) = Pr{rkm(x) ≤ r}
= Pr

{
|{i ∈ [m] : Xi ∈ B(x, r)}| ≥ k

}
= Pr{Bm,P(B(x,r)) ≥ k}
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Proof of Proposition ⋆

• Fix x ∈ Rd and u > 0
• Since FUkm(x)(u) = Frkm(x)(ϱ(

u
m )), we have FUkm(x)(u) = Pr{Bm,Pm ≥ k} from

Lemma 2.1, where Pm ≜ P(B(x, ϱ( u
m )))

• By the Lebesgue differentiation theorem (see, e.g., Rudin [1987]), for a.e. x,

lim
m→∞

mPm = lim
m→∞

u
P(B(x, ϱ( u

m )))

Vol(B(x, ϱ( u
m )))

= up(x)

• Therefore, for each i = 0, . . . , k − 1, we have(
m

i

)
P i
m(1− Pm)m−i =

i!

mi

(
m

i

)(
1− Pm

)m−i (mPm)i

i!

m→∞−→ e−up(x) (up(x))i
i!

,

since limm→∞
i!
mi

(
m
i

)
= 1 and limm→∞(1− Pm)m−i = e−up(x)

• This leads us to concludes that

lim
m→∞

Pr{Ukm(x) > u} =
k−1∑
i=0

e−up(x)up(x)i
i!

= Pr{Uk∞(x) > u}
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How to Choose the Function ϕk?

• Observe

EX1:m
[T̂

(k)
f (X1:m)] = EX1:m

[ 1

m

m∑
i=1

ϕk(Ukm(Xi))
]

= EXm [ϕk(Ukm(Xm))] = EX[ϕk(Uk,m−1(X))] (∗)

• Since Uk,m−1(x)
d→ Uk∞(x) ∼ G(k, p(x)) by Proposition ⋆, we expect

lim
m→∞

EX1:m
[T̂

(k)
f (X1:m)]

(∗)
= lim

m→∞
E[ϕk(Uk,m−1(X))]

(?)
= E[ϕk(Uk∞(X))]

• Hence, the desired unbiasedness might be attained if we choose ϕk such that
E[ϕk(Uk∞(X))] = Tf (p)

⇔
∫

E[ϕk(Uk∞(x))]p(x) dx =

∫
f(p(x))p(x) dx

⇐ E[ϕk(U)] = f(p) for U ∼ G(k, p)
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The Estimator Function via Inverse Laplace Transform

• Given f and k ≥ 1, we choose ϕk such that for every p > 0, if U ∼ G(k, p), then
f(p) = E[ϕk(U)]

=

∫ ∞

0

ϕk(u)
pk

Γ(k)
uk−1e−pu du

=
pk

Γ(k)
L{uk−1ϕk(u)}(p),

where L{·} represents the one-sided Laplace transform, defined as

L{g(u)}(p) ≜
∫ ∞

0

g(ũ)e−pũ dũ

• Rearranging the terms leads to defining the estimator function ϕk for f with
parameter k:

ϕk(u) ≜
Γ(k)

uk−1
L−1

{f(p)
pk

}
(u)
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The Proposed Estimator

• Given f and k, define

T̂
(k)
f (X1:m) ≜ 1

m

m∑
i=1

ϕk(Ukm(Xi)),

where

ϕk(u) ≜
Γ(k)

uk−1
L−1

{f(p)
pk

}
(u),

if the inverse Laplace transform exists
• This estimator unifies almost all existing bias-corrected estimators, and is new for

several other density functionals
• This is different from the existing bias-correction approaches such as [Singh and

Póczos, 2016] and more widely applicable
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The Proposed Estimator: Examples

Table: Examples of functionals of one density and their estimator functions ϕk(u). The last
column presents a pair of exponents (ak, bk) of the polynomial envelope of the estimator function
ϕk(u). The constant ϵ, if any, can be chosen as an arbitrarily small positive number. For the first
three examples, k > −ak is required to guarantee the existence of the corresponding inverse
Laplace transform.

Name Tf (p) = Ep[f(p)] ϕk(u) =
Γ(k)

uk−1
L−1

{f(p)
pk

}
(u) (ak, bk)

Differential entropy E
[
ln 1

p

]
lnu−Ψ(k) (−ϵ, ϵ)

α-entropy
(α ≥ 0) E[pα−1]

Γ(k)

Γ(k − α+ 1)

( 1

u

)α−1

(1− α, 1− α)

Logarithmic α-entropy
(α > 0) E

[
pα−1 ln 1

p

] Γ(k)

Γ(k − α+ 1)
u−α+1(lnu−Ψ(k − α+ 1)) (1− α− ϵ, 1− α+ ϵ)

Exponential (α, β)-entropy
(α > 0, β ≥ 0) E[pα−1e−βp]

Γ(k)

Γ(k − α+ 1)

(u− β)k−α

uk−1
1[β,∞)(u) (0, 1− α) for k ≥ α
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The Proposed Estimator with Two Densities

• Recall X1:m ∼ p and Y1:n ∼ q
• Given f and k, l, define

T̂
(k,l)
f (X1:m,Y1:n) ≜

1

m

m∑
i=1

ϕkl(Ukm(Xi), Vln(Xi)),

where

ϕkl(u, v) ≜
Γ(k)Γ(l)

uk−1vl−1
L−1

{f(p, q)
pkql

}
(u, v).

if the inverse Laplace transform exists
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The Proposed Estimator with Two Densities: Examples

Table: Examples of functionals of two densities and their estimator functions ϕkl(u, v).

Name Tf (p, q) = Ep[f(p, q)] ϕkl(u, v) =
Γ(k)Γ(l)

uk−1vl−1
L−1

{f(p, q)
pkql

}
(u, v)

(akl, bkl);
(ãkl, b̃kl)

KL divergence E
[
ln p
q

]
ln v
u
+Ψ(k)−Ψ(l)

(−ϵ, ϵ);
(−ϵ, ϵ)

α-divergence
(α > 0) E

[(p
q

)α−1] Γ(k)Γ(l)

Γ(k − α+ 1)Γ(l + α− 1)

( v
u

)α−1 (1− α, 1− α);
(α− 1, α− 1)

Logarithmic α-divergence
(α > 0) E

[(p
q

)α−1

ln p
q

] Γ(k)Γ(l)

Γ(k − α+ 1)Γ(l + α− 1)

( v
u

)α−1

×(
ln v
u
+Ψ(k − α+ 1)−Ψ(l + α− 1)

) (1− α− ϵ, 1− α+ ϵ);
(α− 1− ϵ, α− 1 + ϵ)

Le Cam distance E
[ (p− q)2

2p(p+ q)

] 2

(
k + l − 2

k − 1

)−1{ l−1∑
j=0

(
k + l − 2

k − 1 + j

)(
−u
v

)j

−(
−u
v

)l−1(
1− v

u

)k+l−2

1[v,∞)(u)
} (−k + 1, l − 1);

(−l + 1, k − 1)

Entropy difference
(Q≪ P) E

[
ln 1

p
− q

p
ln 1

q

]
(l − 1)

k

u

v
(Ψ(l − 1)− ln v)− (Ψ(k)− lnu)

(−ϵ, 1);
(−1− ϵ,−1 + ϵ)

Reverse KL divergence
(Q≪ P) E

[q
p

ln q
p

]
l − 1

k

u

v

(
ln u
v
+Ψ(l − 1)−Ψ(k + 1)

) (1− ϵ, 1 + ϵ);
(−1− ϵ,−1 + ϵ)

Jensen–Shannon divergence
(Q≪ P) E

[1
2

ln 2p

p+ q
+

q

2p
ln 2q

p+ q

]
(omitted; see paper) (−k + 1, l − 1);

(−l + 1, k − 1)
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Theoretical Guarantees and Proofs
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Polynomial Envelope

• Wish to analyze the estimator in a unified manner for general functionals
• Idea: abstract tail behaviors of the estimator function ϕk(u) (i.e., how ϕk(u) varies

when u ↓ 0 and u ↑ ∞) by a pair of constants (ak, bk) ∈ R2 such that

|ϕk(u)| ≲ ψak,bk(u),

where we define a piecewise polynomial function ψa,b : R+ → R for a, b ∈ R as

ψa,b(u) ≜
{
ua if 0 < u ≤ 1,

ub if u > 1
(6)

• As a gets larger, ψa,b(u) decays faster as u ↓ 0
⇒ a quantifies the amount of contribution of low density values through ϕk(u)

• As b gets smaller, ψa,b(u) decays faster as u ↑ ∞
⇒ b quantifies the amount of contribution of high density values through ϕk(u)

• We will establish stronger statements for functionals with larger a and smaller b
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Examples

Example 3.1 (Differential entropy [Kozachenko and Leonenko, 1987])
For f(p) = ln(1/p) and any k ≥ 1, we can compute

ϕk(u) = lnu−Ψ(k).

As a bound on the estimator function ϕk(u), we consider

|ϕk(u)| ≲ | lnu| + 1 ≲ ψ−ϵ,ϵ(u)

for any arbitrarily small ϵ > 0 throughout the papera

aA finer analysis without relying on the polynomial bound ψ−ϵ,ϵ(u) may lead to a marginal
improvement in the resulting performance guarantee [Gao et al., 2018, Bulinski and Dimitrov,
2019a,b].
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Examples

Example 3.2 (α-entropy [Leonenko et al., 2008])
• For f(p) = pα−1 (α ≥ 0), we refer to the density functional Tf (p) =

∫
pα(x) dx as

the α-entropy
• In the literature, this functional appears in Rényi [1961] entropy
hα(p) = (lnTf (p))/(1− α) and Harvda and Charvat [1967] or Tsallis [1988] entropy
h̃α(p) = (1− Tf (p))/(α− 1)

• For any k ∈ N such that k > α− 1, we can compute

ϕk(u) =
Γ(k)

Γ(k − α+ 1)

( 1

u

)α−1

,

which allows the tight polynomial bound

|ϕk(u)| ≲ ψ1−α,1−α(u)
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Asymptotic L2-consistency
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Local Extremal Operators

• The standard simplifying assumptions: there exist c > 0 and C > 0 such that

c ≤ p(x) ≤ C for any x ∈ supp(p)
• Instead, we consider weaker conditions than the boundedness assumptions, adopting

conditions from [Bulinski and Dimitrov, 2019a,b].
• For each r > 0, define the local extremal operators on Rd for a density p by

(local maximal operator) Mrp(x) ≜ sup
r′∈(0,r]

P(B(x, r′))
Vol(B(x, r′)) ,

(local minimal operator) mrp(x) ≜ inf
r′∈(0,r]

P(B(x, r′))
Vol(B(x, r′))

• mrp(x) ≤ p(x) ≤ Mrp(x)
• By the Lebesgue differentiation theorem, Mrp(x) ↓ p(x) and mrp(x) ↑ p(x) as r ↓ 0,

for p-a.e. x
• For each r > 0, x 7→ Mrp(x) and x 7→ mrp(x) are lower- and upper-semicontinuous,

respectively, and so are Borel measurable [Bulinski and Dimitrov, 2019a,b]
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Functionals Based on Local Extremal Operators

• Given a non-decreasing function ξ : R+ → R+, for densities p and p̃, define

(upper bound on p) W (p, p̃;ϑ, r) ≜
∫
p(x)(Mrp̃(x))ϑ dx,

(lower bound on p) w(p, p̃; ξ, ϑ, r) ≜
∫
p(x)ξ((mrp̃(x))−ϑ) dx,

(bounded support) R(p, p̃; ξ, ϑ, r) ≜
∫∫

ρ(x,y)>r

p(x)p̃(y)ξ(υϑ(ρ(x, y))) dx dy

for each ϑ > 0 and r > 0

• Note: R(p, p̃; ξ, ϑ, r)→ 0 as r →∞
• As the tails of p and p̃ decay faster, so does R(p, p̃; ξ, ϑ, r)
• In particular, if p and p̃ have bounded support, then R(p, p̃; ξ, ϑ, r) = 0 for r � 1

• Note: W , w, and R become larger as ϑ increases
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Regularity Conditions

• Given k ∈ N and (a, b) ∈ R2, consider the following conditions
(Upp̃; k, a) Either a ≥ 0, or if a < 0, then there exists r > 0 such that W (p, p̃; k, r) < ∞

(Lpp̃; ξ, b) Either b ≤ 0, or if b > 0, then there exists r > 0 such that w(p, p̃; ξ, b, r) < ∞ and

lim sup
m→∞

ξ(mb)R
(
p, p̃; ξ, b, ϱ

(κm

m

))
< ∞ (7)

for some κm such that κm/m → ∞ and (lnκm)/m → 0 as m → ∞

• Recall: the polynomial tail exponents a and b of ϕk(u) quantify the amount of
contribution of high and low density values to the estimator, resp.

• Hence, a ↔ W that captures the upper boundedness of the density;
while b↔ w and R that quantify the lower boundedness

• Note: as a gets larger, k gets smaller, and b gets smaller, conditions (Lpp; ξ, b) and
(Upp; k, a) become weaker, thus encompassing a larger class of densities.
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L2-consistency

• Let Ξ be the class of non-decreasing functions ξ : R+ → R+ such that
1. ξ(t)/t → ∞ as t → ∞;
2. ξ(t1t2) ≤ ξ(t1)ξ(t2) for any x, y > t0 for some t0 ∈ R+;
3. ω(ξ) ≜ inf{η > 1: ξ(t)/tη → 0 as t → ∞} < ∞
• Examples: ξ1(t) = (t ln t) ∨ 0 ∈ Ξ with t0 = e and ω(ξ1) = 1;

ξ2(t) = tα ∈ Ξ for α > 1 with t0 = 0 and ω(ξ2) = α

• Bias–variance decomposition of mean-squared error (MSE):

E[(T̂f (X1:m)− Tf (p))2] = (E[T̂f (X1:m)]− Tf (p))2 + Var(T̂f (X1:m))

= (bias)2 + (variance)

• Analyzing the bias is often involved, and controlling the variance is relatively easier
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L2-consistency (Cont’d)

Theorem 3.3 (Vanishing bias)
For Tf (·), if ϕk is continuous and p satisfies (Upp; k, a) and (Lpp; ξ, b) with some
function ξ ∈ Ξ, then the estimator (5) with fixed k > −ω(ξ)a is asymptotically unbiased

Theorem 3.4 (Vanishing variance)
For Tf (·), if p satisfies (Upp; k, a) and (Lpp; ξ, b) with ξ(t) = t2, the variance of the
estimator (5) with fixed k > −2a converges to zero as m→∞

Corollary 3.5 (L2-consistency)
For Tf (·), if ϕk is continuous and p satisfies (Upp; k, a) and (Lpp; ξ, b) with ξ(t) = t2,
then the estimator (5) with fixed k > −2a is L2-consistent
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Examples

Example 3.6 (Differential entropy; Example 3.1 contd.)
• Recall: for any k ∈ N, |ϕk(u)| ≲ ψ−ϵ,ϵ(u) for arbitrarily small ϵ > 0

• By Corollary 3.5, the estimator (5) is L2-consistent if p satisfies that (Upp; k,−ϵ)
and (Lpp; ξ, ϵ) with ξ(t) = t2 for some ϵ > 0

• We note that the condition (7) in (Lpp; ξ, ϵ) can be relaxed to a milder condition in
which there exist some δ,R > 0 such that∫∫

ρ(x,y)>R

p(x)p(y)| ln υ(ρ(x, y))|δ dx dy <∞

by performing a similar analysis based on the upper bound |ϕk(u)| ≲ | lnu|+ 1

• This recovers a similar result reported in [Bulinski and Dimitrov, 2019b]
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Examples

Example 3.7 (α-entropy; Example 3.2 contd.)
• Recall that for any k ∈ N, |ϕk(u)| ≲ ψ1−α,1−α(u)

• For α > 1, since b = 1−α < 0, the estimator with fixed k > 2(α− 1) is L2-consistent
if p satisfies (Upp; k, a), which slightly generalizes the upper-boundedness condition
and the requirement k > 2α− 1 assumed in [Leonenko et al., 2008]

• For α < 1, since a = 1− α > 0, the estimator with fixed k ≥ 1 is L2-consistent if p
satisfies (Lpp; ξ, b) with ξ(t) = t2, for examples, if p is bounded away from zero and
supported over a hyperrectangle (Leonenko and Pronzato [2010] reported the
L2-consistency of the estimator for densities satisfying alternative conditions when
α < 1)
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Proof of Theorem 3.3 (Vanishing Bias)

• Since ϕk is continuous, from Proposition ⋆, we have
ϕk(Uk,m−1(Xm))

d→ ϕk(Uk∞(X)) as m→∞ by the continuous mapping theorem,
where Uk∞(x) is a G(k, p(x)) random variable, independent of X ∼ p for P-a.e. x

• Recall: a collection of random variables (Xi)i∈I is said to be uniformly integrable
(U.I.) if for any ϵ > 0, there exists K ≥ 0 such that sup

i∈I
E[Xi1[K,∞)(Xi)] ≤ ϵ

• Proposition: if (Xn)n∈N is U.I. and Xn
d→ X∞, then

lim
n→∞

E[Xn] = E[X∞]

• Hence, if the sequence of random variables (ϕk(Uk,m−1(Xm)))m≥1 is U.I., the
asymptotic unbiasedness readily follows:

lim
m→∞

E[T̂ (k)
f (X1:m)] = lim

m→∞
E[ϕk(Uk,m−1(Xm))]

(U.I.?)
= E[ϕk(Uk∞(X))] = Tf (p)
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Proof of Theorem 3.3 (Vanishing Bias) (Cont’d)

• To show the uniform integrability of (ϕk(Uk,m−1(Xm)))m≥1, we invoke:

Lemma 3.8 (De la Vallée Poussin theorem [Borkar, 1995, Theorem 1.3.4])
A collection of random variables (Xi)i∈I is uniformly integrable
⇔ ∃ a non-decreasing function ξ : R+ → R+ such that

1. sup
i∈I

E[ξ(|Xi|)] < ∞; and

2. lim
t→∞

ξ(t)

t
= ∞

• (This is why we introduced the class of functions Ξ)
• The second condition is satisfied since ξ ∈ Ξ by assumption
• Only need to check the first condition
• We will plug-in Xi ← ϕk(Uk,m−1(Xm))
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Proof of Theorem 3.3 (Vanishing Bias) (Cont’d)

• Observe that we have

E[ξ(|ϕk(Uk,m−1(Xm))|)] =
∫
p(x)E[ξ(|ϕk(Uk,m−1(x))|)] dx

≲
∫
p(x)E[ξ(ψa,b(Ukm(x)))] dx (polynomial envelope)

• Since ξ ∈ Ξ, we have −
∫ 1

0
uk dξ(ua∧0) <∞ for k > −ω(ξ)a and∫∞

0
e−tξ(tb∨0) dt <∞, and thus we can apply Lemma 3.9 (next slide), which yields

lim sup
m→∞

E[ξ(|ϕk(Uk,m−1(Xm))|)] ≲ lim sup
m→∞

∫
p(x)E[ξ(ψa,b(Ukm(x)))] dx <∞

• This ensures the uniform integrability of (ϕk(Uk,m−1(Xm)))m≥1 by the de la Vallée
Poussin theorem, and thus concludes the proof

Jongha Ryu August 10, 2022 36 / 66



A Technical Lemma

Lemma 3.9
Assume that −

∫ 1

0
uk dξ(ua∧0) <∞ and

∫∞
0
e−tξ(tb∨0) dt <∞.

If the density p satisfies (Upp; k, a) and (Lpp; ξ, b), we have

lim sup
m→∞

∫
p(x)E[ξ(ψa,b(Ukm(x)))] dx <∞

• The proof is rather involved
• Idea: Break the inner integral over (0,∞) over four intervals

(0, 1), (1, νm), (νm, κm), (κm,∞), and analyze each term by bounding the cumulative
density function of Ukm(x)
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A Generic Lemma for Bounding Variance

Lemma 3.10 ([Singh and Póczos, 2016])
For a given function ϕ : R+ → R, let ζk(x|x1:m) ≜ ϕ(rk(x|x1:m)) for any points x, x1:m in
the d-dimensional Euclidean space (Rd, ∥ · ∥). Let

Φ(x1:m) =
1

m

m∑
i=1

ζk(xi |x∼i
1:m). (8)

If the samples X1:m are i.i.d., then

Var(Φ(X1:m)) ≤ 2(1 + kγd)

m
{(2k + 1)E[ζ2k(Xm |X1:m−1)]

+ 2kE[ζ2k+1(Xm |X1:m−1)]},

where γd ∈ N is a constant which depends only on d
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Proof Techniques for the Variance Lemma

Lemma 3.11 (Efron–Stein inequality [Efron and Stein, 1981, Steele, 1986])
Let X1, . . . , Xn be independent random variables, and let g(X1:n) = g(X1, . . . , Xn) be a
square-integrable function of X1, . . . , Xn.
Then if X ′

1, . . . , X
′
n are independent copies of X1, . . . , Xn, we have

Var(g(X1:n)) ≤
1

2

n∑
i=1

E
[
|g(X1:n)− g(X1:i−1X

′
iXi+1:n)|2

]
Lemma 3.12 ([Biau and Devroye, 2015, Lemma 20.6])
In (Rd, ∥ · ∥), there exists a constant γd > 0 which depends only on d such that for any
m ∈ N and for any distinct points x, x1, . . . , xm ∈ Rd,

m∑
i=1

1Nk(xi|x∼i
1:m,x)(x) ≤ kγd
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Proof of Theorem 3.4 (Vanishing Variance)

• By Lemma 3.10 for the Euclidean space (Rd, ∥ · ∥), we have

Var(T̂ (k)
f ) ≤ 2(1 + kγd)

m
{(2k + 1)E[ϕ2k(Uk,m−1(Xm))]

+ 2kE[ϕ2k(Uk+1,m−1(Xm))]},

where γd is a constant which only depends on d; see Lemma 3.10
• Since ξ(t) = t2 and k > −2a imply that −

∫ 1

0
uk dξ(ua∧0) <∞ and∫∞

0
e−tξ(tb∨0) dt <∞, we can apply Lemma 3.9, which ensures for k′ ∈ {k, k + 1}

that
lim sup
m→∞

E[ϕ2k(Uk′,m−1(Xm))] <∞

• It establishes Var(T̂ (k)
f ) = O(m−1) for m sufficiently large
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L2-Convergence Rates
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Boundedness Conditions

Upper bound
(Up) there exists 0 < Cp <∞ such that p(x) ≤ Cp almost everywhere (a.e.)

Lower bound
(L1p) there exists cp > 0 such that p(x) ≥ cp for x ∈ supp(p);
(L2p) the support of p is bounded;
(L3p) there exists r > 0 such that

ηp ≜ inf
x∈supp(p)

inf
r′∈(0,r]

Vol(B(x, r′) ∩ supp(p))
Vol(B(x, r′)) > 0
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Boundedness Conditions

Remark 3.1
• The upper-boundedness condition (Up) implies (Upp; k, a), since Mrp(x) ≤ Cp <∞

for every x ∈ Rd and any r > 0

• Also, the lower-boundedness conditions (L1p), (L2p), and (L3p) imply (Lpp; ξ, b) for
any nonnegative function ξ, since for b > 0 we have

w(p, p; ξ, b, r) =

∫
p(x)ξ((mrp(x))−b) dx

≤
∫
p(x)ξ((ηpcp)−b) dx = ξ((ηpcp)

−b) <∞

for some r > 0 by (L1p), (L2p), and (L3p), and

R(p, p; ξ, b, ϱ(κm/m))) = 0

for m sufficiently larger than an absolute constant, by (L2p)
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Variance Rate

Theorem 3.13 (Variance rate)
For Tf (·), if p satisfies (Up), (L1p), (L2p), and (L3p), then the estimator (5) with fixed
k > −2a satisfies

Var(T̂ (k)
f ) = O(m−1) (9)
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Proof of Theorem 3.13 (Variance Rate)

• Recall: By Lemma 3.10 for the Euclidean space (Rd, ∥ · ∥), we have

Var(T̂ (k)
f ) ≤ 2(1 + kγd)

m
{(2k + 1)E[ϕ2k(Uk,m−1(Xm))] + 2kE[ϕ2k(Uk+1,m−1(Xm))]},

where γd is a constant which only depends on d; see Lemma 3.10
• Since the boundedness conditions (Up), (L1p), (L2p), and (L3p) imply stronger

conditions than (Upp; k, a) and (Lpp; ξ, b) (see Remark 3.1), we can prove:

Lemma 3.14
Assume that −

∫ 1

0
uk dξ(ua∧0) <∞ and

∫∞
0
e−tξ(tb∨0) dt <∞.

If the density p satisfies (Up), (L1p), (L2p), and (L3p), we have

sup
m≥1

∫
p(x)E[ξ(ψa,b(Ukm(x)))] dx <∞

• Hence, the variance rate directly follows by setting ξ(t) = t2
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Smoothness Conditions

Definition 3.15
For σ > 0, a function g : Rd → R is said to be σ-Hölder continuous over an open subset
Ω ⊆ Rd if g is continuously differentiable over Ω up to order κ ≜ ⌈σ⌉ − 1 and

L(g; Ω) ≜ sup
r∈Zd

+

|r|=κ

sup
y,z∈Ω
y̸=z

|∂rg(y)− ∂rg(z)|
∥y− z∥β <∞, (10)

where β ≜ σ − κ. Here we use a multi-index notation (see, e.g., [Folland, 2013, Ch. 8]),
that is, |r| ≜ r1 + · · ·+ rd for r ∈ Zd

+ and ∂rg(x) ≜ ∂κg(x)
∂x

r1
1 ··· ∂xrd

d
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Smoothness Conditions (Cont’d)

• Due to the lower-boundedness condition (L1p), the density is NOT smooth on the
boundary of the support

• Hence, we assume a smoothness condition on the underlying density only over the
interior of its support and impose a separate regularity condition on the boundary:

Smoothness
(Sp) The density p is σp-Hölder continuous over the interior of supp(p) for

σp ∈ (0, 2];
(Bp) the boundary of supp(p) has finite (d− 1)-dimensional Hausdorff

measure [Folland, 2013]
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Bias Rate

Theorem 3.16 (Bias rate)
For Tf (·), if p satisfies the conditions (Up), (L1p), (L2p), (L3p), (Sp), and (Bp), then
the estimator (5) with fixed k > −a satisfies∣∣E[T̂ (k)

f ]− Tf (p)
∣∣ = Õ(m−λ(σp,a,k)), (11)

where λ(σ, a, k) =


1
d (σ ∧ 1)(k+a

k−1 ) if a ≤ −σ
d − 1,

1
d (σ ∧

k+a
k−1 ) if − σ

d − 1 < a ≤ −1,
1
d (σ ∧ 1) if a > −1

(12)

Remark 3.2
• The rate exponent λ increases as the lower-tail-polynomial exponent a increases, or

equivalently, the estimator function ϕk(u) converges to 0 faster as u ↓ 0
• If a is independent of k (which is true for most cases), the rate exponent λ becomes

larger with larger k
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Proof of Theorem 3.16 (Bias Rate)

• First note that Ukm(X1), . . . , Ukm(Xm) are identically distributed, and
Ukm(Xm) = Uk,m−1(Xm). Hence, we can write

E[T̂ (k)
f ] = E[ϕk(Uk,m−1(Xm))]

=

∫
E[ϕk(Uk,m−1(Xm))|Xm = x]p(x) dx

=

∫
E[ϕk(Uk,m−1(x))]p(x) dx, (13)

where the last equality holds since Xm and X1:m−1 are independent. Recall from
Proposition ⋆ that Ukm(x) d→ Uk∞(x) ∼ G(k, p(x)) for p-a.e. x

• Thus, by the construction of ϕk(u), we can express the density functional as

Tf (p) =

∫
f(p(x))p(x) dx =

∫
E[ϕk(Uk∞(x))]p(x) dx
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Proof of Theorem 3.16 (Bias Rate) (Cont’d)

• Applying the triangle inequality, we first have∣∣E[T̂ (k)
f ]− Tf (p)

∣∣ ≤ ∫
p(x)|E[ϕk(Uk,m−1(x))− ϕk(Uk∞(x))]| dx

=

∫
p(x)

∣∣∣∫ ∞

0

ϕk(u)(ρUk,m−1(x)(u)− ρUk∞(x)(u)) du
∣∣∣ dx (14)

• Pick any 0 ≤ τm ≤ 1 ≤ νm <∞, which are to be determined later as functions of
k, a, d, and σp

• Break the inner integral and apply the polynomial bound |ϕk(u)| ≲ ψa,b(u) with the
triangle inequality to obtain∣∣E[T̂ (k)

f ]− Tf (p)
∣∣ ≲ Iout,1 + Iin,1 + Iin,2 + Iout,2, (15)
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Proof of Theorem 3.16 (Bias Rate) (Cont’d)

• where

Iout,1 ≜ Ep[Iout,1(X)] = Ep

[∫ τm

0

ψa,b(u)(ρUk,m−1(X)(u) + ρUk∞(X)(u)) du
]
,

Iin,1 ≜ Ep[Iin,1(X)] = Ep

[∫ 1

τm

ψa,b(u)|ρUk,m−1(X)(u)− ρUk∞(X)(u)| du
]
,

Iin,2 ≜ Ep[Iin,2(X)] = Ep

[∫ νm

1

ψa,b(u)|ρUk,m−1(X)(u)− ρUk∞(X)(u)| du
]
, and

Iout,2 ≜ Ep[Iout,2(X)] = Ep

[∫ ∞

νm

ψa,b(u)(ρUk,m−1(X)(u) + ρUk∞(X)(u)) du
]

• The inner bias terms Iin,1 and Iin,2 can be controlled under the conditions (Up),
(Sp), and (Bp)

• The outer bias terms Iout,1 and Iout,2 can be bounded under the conditions (Up),
(L1p), (L2p), and (L3p)

• After putting the bounds together, a proper choice of the break points (τm, νm)
concludes the proof
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Technical Lemmas for the Proof

• The following lemma establishes a rate of convergence of a Poisson binomial random
variable Bm,Q/m ∼ Binom(m,Q/m) to a Poisson random variable PQ ∼ Poisson(Q)
in distribution

Lemma 3.17 (Generalization of [Gao et al., 2018, Lemma 5])
For any Q, k = o(

√
m) as m→∞, there exists a constant C0 > 0 such that for m

sufficiently large

∣∣Pr{Bm, Qm
= k} − Pr{PQ = k}

∣∣ ≤ C0
Qke−Q

k!

(k2 +Q2)

m
.
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Technical Lemmas for the Proof (Cont’d)

Lemma 3.18 (Generalization of [Gao et al., 2018, Lemma 4])
If a density p is σp-Hölder continuous with constant L > 0 over B(x, R) for x ∈ Rd and
some σp ∈ [0, 2], we have for any 0 < r < R,∣∣∣ P(B(x, r))

Vol(B(x, r)) − p(x)
∣∣∣ ≤ d

σp + d
Lrσp ,∣∣∣ d P(B(x, r))

dVol(B(x, r)) − p(x)
∣∣∣ ≤ Lrσp .

• The convergence speed of Ukm(x) d→ Uk∞(x) can be quantified in terms of a gap
between the densities using this lemma and the order of smoothness σp of p

• However, O(rσp) in Lemma 3.18 cannot be improved further beyond O(r2) [Han
et al., 2020]

• In general, nonnegative kernel-based methods cannot exploit σp > 2
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On the Proof of Theorem 3.16 (Bias Rate)

Remark 3.3
• The key step in this analysis is the decomposition in (15), which is based on the

construction of the estimator from its asymptotic unbiasedness
• By considering only the polynomial tail behavior of each estimator function and using

(15), our analysis can deal with a general functional in a simple, unified manner
• The rest of the bias analysis, that is, bounding the four bias terms, closely follows and

naturally extends that of [Gao et al., 2018] for a truncated version of the
Kozachenko–Leonenko estimator of differential entropy
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MSE Rate

Corollary 3.19
Under the same assumptions in Theorem 3.16, then the estimator (5) with fixed k > −2a
satisfies

E
[(
T̂

(k)
f − Tf (p)

)2]
= Õ(m−2λ(σp,a,k) +m−1) (16)

Remark 3.4
• For d ≥ 2, the bias bound always dominates the variance bound so that the MSE is

bounded as Õ(m−2λ)

• For d = 1, the variance bound may dominate the bias bound, depending on σp and a
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Examples

Example 3.20 (Differential entropy; Example 3.1 contd.)
• Recall from Example 3.1 that |ϕk(u)| ≲ ψ−ϵ,ϵ(u) for any arbitrarily small ϵ > 0.

Suppose that p satisfies the conditions (Up), (L1p), (L2p), (L3p), (Sp), and (Bp),
in Theorem 3.16 with some σp ∈ (0, 2]

• Then we have the bias exponent λ = σp/d as in the third case of (12) and the
variance exponent of 1 from (9)

• Consequently, by Corollary 3.19 the MSE of our estimator is bounded as
Õ(m−2(σp∧1)/d +m−1). This result recovers the same MSE rate of a truncated
Kozachenko–Leonenko estimator in [Gao et al., 2018] for σp = 2

• We remark that Gao et al. [2018] reported a lower bound Ω(m− 16
d+8 +m−1) for

estimating differential entropy under σ = 2, and indeed the convergence rate is not
minimax optimal!
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Examples

Example 3.21 (α-entropy; Example 3.2 contd.)
• Recall from Example 3.2 that |ϕk(u)| ≲ ψ1−α,1−α(u) for any k ∈ N such that
k > α− 1

• Hence, for densities satisfying the conditions (Up), (L1p), (L2p), (L3p), (Sp), and
(Bp), the MSE of our estimator (5) with fixed k > 2(α− 1) is bounded as (16) with
the bias rate exponent

λ(σp, a, k) =


1
d (σp ∧ 1) if α < 2,
1
d (σp ∧

k+1−α
k−1 ) if 2 ≤ α < 2 +

σp

d ,
1
d (σp ∧ 1)(k+1−α

k−1 ) if α ≥ 2 +
σp

d

(17)

• Note that similar convergence rates can be established for the logarithmic α-entropy
and the exponential (α, β)-entropy
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On the Rate Suboptimality

Remark 3.5
• An estimator of a given density functional is said to be minimax optimal if its MSE

for the worst-case density is no larger than that of any other estimator
• In general, the established convergence rates in MSE in this paper are not minimax

optimal [Singh and Póczos, 2014a,b, Krishnamurthy et al., 2014, Kandasamy et al.,
2015] due to the suboptimal bias rates; see, e.g., Example 3.20

• For the special case of differential entropy, we note that Jiao et al. [2018] established
an asymptotic minimax optimality of the Kozachenko–Leonenko estimator for smooth
densities of order σ ∈ (0, 2] over a torus (no boundary condition), matching the lower
bound of [Han et al., 2020] up to a polylogarithmic factor
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More Technical Results

• Convergence rates for smooth densities of unbounded support

• Functionals of two densities

• Adaptive choices of k: Using k = Θ((lnm)1.01) may improve the rates
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Concluding Remarks

• The established convergence rates are not minimax optimal; see Remark 3.5
Q. Can we extend the analysis of [Jiao et al., 2018] and establish a minimax optimality

of the estimator under the torus condition?
• As noted earlier, the proposed estimators cannot adapt to a higher order of

smoothness σ > 2, due to the inherent limitation of positive-valued kernels
• One possible solution to both problems is the ensemble approach [Sricharan et al.,

2013, Moon and Hero, 2014] that takes a weighted average of multiple estimators
based on the asymptotic bias expansion of each density functional estimator

Q. Is an ensemble version of the estimators minimax-rate optimal?
See Berrett and Samworth [2019] for a weighted version of the proposed divergence
functional estimator from this paper with local minimax optimality
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