Nearest Neighbor Density Functional Estimation From Inverse Laplace Transform

IEEE Transactions on Information Theory, vol. 68, no. 6, pp. 3511-3551, June 2022

Jongha (Jon) Ryu UCSD \rightarrow MIT

Joint work with Shouvik Ganguly, Young-Han Kim, Yung-Kyun Noh, Daniel D. Lee

KIAS
August 10, 2022

Outline

(1) Introduction
(2) The Proposed Estimators
(3) Theoretical Guarantees and Proofs

Asymptotic L_{2}-consistency
L_{2}-Convergence Rates

Introduction

Problem Setting (1)

- A distribution P over $\mathcal{X}=\mathbb{R}^{d}$ with density p
- Q. How to characterize a property of a distribution by a single number?
- A. mean, variance, entropy, ...
- An one-density functional: for some $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$,

$$
T_{f}(p) \triangleq \mathbb{E}_{\mathbf{X} \sim p}[f(p(\mathbf{X}))]=\int f(p(\mathbf{x})) p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

- Estimation: given $\mathbf{X}_{1: m} \sim p$, how to estimate $T_{f}(p)$?

Problem Setting (2)

- Two distributions P, Q over $\mathcal{X}=\mathbb{R}^{d}$ with density p, q
- Q. How to characterize a dissimilarity of the distributions?
- A. KL divergence, f-divergences, integral probability metrics, Wasserstein distance, maximum mean discrepancy, ..
- A two-density functional: for some $f: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$,

$$
T_{f}(p, q) \triangleq \mathbb{E}_{\mathbf{X} \sim p}[f(p(\mathbf{X}), q(\mathbf{X}))]=\int f(p(\mathbf{x}), q(\mathbf{x})) p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

- Estimation: given $\mathbf{X}_{1: m} \sim p$ and $\mathbf{Y}_{1: n} \sim q$, how to estimate $T_{f}(p, q)$?
- This talk will focus on the one-density case

Motivation

- Wish to construct an L_{2}-consistent estimator $\hat{T}_{f}\left(\mathbf{X}_{1: m}\right)$ of $T_{f}(p)$, which satisfies

$$
\lim _{m \rightarrow \infty} \mathbb{E}_{\mathbf{X}_{1: m} \sim p}\left[\left(\hat{T}_{f}\left(\mathbf{X}_{1: m}\right)-T_{f}(p)\right)^{2}\right]=0
$$

- A naive, plug-in solution: given a density estimator $\hat{p}(\mathbf{x})$,

$$
T_{f}(p) \approx \tilde{T}_{f}(p) \triangleq \frac{1}{m} \sum_{i=1}^{m} f\left(\hat{p}\left(\mathbf{X}_{i}\right)\right)
$$

- One can plug-in a k-nearest-neighbors (k-NN) density estimator, but it is NOT consistent for fixed k
- This paper: Construct a class of L_{2}-consistent estimators based on k-NNs

Using Nearest-Neighbors

- Classification, regression: "your neighbors can tell about you"
- Density (functional) estimation: "how far your neighbors tell how crowded you are at"
- Samples $\mathbf{X}_{1: m} \triangleq\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}\right\} \sim$ i.i.d. p
- Given a query point \mathbf{x},

$$
\begin{aligned}
& \mathbf{X}_{(k)}(\mathbf{x})=\mathbf{X}_{(k)}\left(\mathbf{x} ; \mathbf{X}_{1: m}\right) \triangleq(\text { the } k \text {-th nearest neighbor }) \\
& \quad r_{k}(\mathbf{x})=r_{k}\left(\mathbf{x} ; \mathbf{X}_{1: m}\right) \triangleq(\text { the distance from } \mathbf{x} \text { to the } k \text {-th nearest neighbor })
\end{aligned}
$$

- Intuition:

$$
p(\mathbf{x}) \times(\text { volume of the } k \text {-NN ball at } \mathbf{x}) \approx \frac{k}{m}
$$

- The standard k-NN density estimator:

$$
\hat{p}_{k m}(\mathbf{x}) \triangleq \frac{k}{m \times(\text { volume of the } k \text {-NN ball at } \mathbf{x})}=\frac{k}{m v_{d} r_{k}^{d}(\mathbf{x})}
$$

- Let $v_{d} \triangleq\left(\right.$ volume of the unit ball in $\left.\mathbb{R}^{d}\right)$

A Plug-in Approach

- Recall

$$
\hat{p}_{k m}(\mathbf{x})=\frac{k}{m v_{d} r_{k}^{d}(\mathbf{x})}
$$

- Fact: $\hat{p}_{k m}(\mathbf{x}) \rightarrow p(\mathbf{x})$ (weakly consistent) as $m \rightarrow \infty$ if $k \rightarrow \infty$ with $k=o(m)$
- Example: differential entropy $\left(f(p)=\ln \frac{1}{p}\right)$

$$
h(p) \triangleq \int p(\mathbf{x}) \log \frac{1}{p(\mathbf{x})} \mathrm{d} \mathbf{x}
$$

- Let's build a plug-in estimator with $\hat{p}_{k m}(\mathbf{x})$:

$$
\tilde{h}_{k}\left(\mathbf{X}_{1: m}\right) \triangleq \frac{1}{m} \sum_{i=1}^{m} \log \frac{1}{\hat{p}_{k m}\left(\mathbf{X}_{i}\right)}
$$

- For fixed $k \in \mathbb{N}$, it is NOT consistent!

Kozachenko-Leonenko Estimator

- We need to correct its bias...
- The (generalized) Kozachenko-Leonenko estimator [Kozachenko and Leonenko, 1987, Singh et al., 2003, Goria et al., 2005]:

$$
\begin{align*}
\hat{T}_{\mathrm{KL}}^{(k)}\left(\mathbf{X}_{1: m}\right) & =\tilde{T}_{f}\left(\hat{p}_{k m}\right)+\ln k-\Psi(k) \tag{1}\\
& =\frac{1}{m} \sum_{i=1}^{m} \ln \frac{1}{\hat{p}_{k m}\left(\mathbf{X}_{i}\right)}+\ln k-\Psi(k),
\end{align*}
$$

where $\Psi(x) \triangleq \Gamma^{\prime}(x) / \Gamma(x)$ denotes the digamma function [Korn and Korn, 2000]

- Fact 1: $\hat{T}_{\mathrm{KL}}^{(k)}\left(\mathbf{X}_{1: m}\right)$ is L_{2}-consistent for any fixed $k \geq 1$ [Tsybakov and van der Meulen, 1996, Goria et al., 2005, Gao et al., 2018]
- Fact 2: $\hat{T}_{\mathrm{KL}}^{(k=1)}\left(\mathbf{X}_{1: m}\right)$ is minimax-rate-optimal for a certain class of densities [Jiao et al., 2018]
- Q. Given a general f, how can we build a L_{2}-consistent estimator based on fixed- k-NNs?

A Brief History of Bias-Corrected Plug-in Estimators

- In a similar spirit, L_{2}-consistent fixed- k or fixed- (k, l) plug-in estimators with proper additive or multiplicative bias correction were proposed and analyzed for KL divergence [Wang et al., 2009], Rényi entropies [Leonenko et al., 2008], Rényi divergences [Póczos and Schneider, 2011], and several other divergences of a specific polynomial form [Póczos et al., 2012]:

$$
\begin{align*}
\tilde{T}_{f}^{\mathrm{aff}}(\hat{p}) & =a_{k} \tilde{T}_{f}(\hat{p})+b_{k} \tag{2}\\
\tilde{T}_{f}^{\mathrm{aff}}(\hat{p}, \hat{q}) & =a_{k l} \tilde{T}_{f}(\hat{p}, \hat{q})+b_{k l} \tag{3}
\end{align*}
$$

where $\left(a_{k}, b_{k}\right)$ and $\left(a_{k l}, b_{k l}\right)$ determine functional-specific bias correction

- Singh and Póczos [2016] analyzed a bias-corrected estimatorof the following form

$$
\begin{equation*}
\tilde{T}_{b \circ f}(\hat{p})=\frac{1}{m} \sum_{i=1}^{m} b_{k m}\left(f\left(\hat{p}_{k m}\left(\mathbf{X}_{i}\right)\right)\right) \tag{4}
\end{equation*}
$$

and established L_{2}-consistency for fixed k with convergence rate if there exists a bias-correcting function $b_{k m}$ that satisfies a strict condition depending on p

The Proposed Estimators

Our General Recipe

- Given f and $k \geq 1$, define

$$
\begin{equation*}
\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right) \triangleq \frac{1}{m} \sum_{i=1}^{m} \phi_{k}\left(U_{k m}\left(\mathbf{X}_{i}\right)\right), \tag{5}
\end{equation*}
$$

where we denote a normalized volume of the k-NN ball at x as

$$
U_{k m}(\mathbf{x}) \triangleq U_{k}\left(\mathbf{x} ; \mathbf{X}_{1: m}\right) \triangleq m v_{d} r_{k}^{d}(\mathbf{x})
$$

and choose a function ϕ_{k} so that

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right)\right]=T_{f}(p) \quad \text { (asymptotic unbiasedness) }
$$

An Useful Asymptotic Property

- A normalized volume of the k-NN ball at x:

$$
U_{k m}(\mathbf{x}) \triangleq U_{k}\left(\mathbf{x} ; \mathbf{X}_{1: m}\right) \triangleq m v_{d} r_{k}^{d}(\mathbf{x})
$$

- A Gamma random variable $U \sim \mathrm{G}(\alpha, \beta)$ with shape parameter $\alpha>0$ and rate parameter $\beta>0$ is defined by its density

$$
f_{\alpha, \beta}(u) \triangleq \frac{\beta^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\beta u}, \quad u>0
$$

Proposition \star

For any $k \in \mathbb{N}$, for p-almost every \mathbf{x},

$$
U_{k m}(\mathbf{x}) \xrightarrow{d} U_{k \infty}(\mathbf{x}) \text { as } m \rightarrow \infty,
$$

where $U_{k \infty}(\mathrm{x}) \sim \mathrm{G}(k, p(\mathrm{x}))$

Distribution of the k-NN Distance

Lemma 2.1

The $c d f$ of $r_{k m}(\mathbf{x})$ is

$$
F_{r_{k m}(\mathbf{x})}(r)=\operatorname{Pr}\left\{B_{m, \mathbf{P}(\mathbb{B}(\mathbf{x}, r))} \geq k\right\}
$$

Proof.

$$
\begin{aligned}
F_{r_{k m}(\mathbf{x})}(r) & =\operatorname{Pr}\left\{r_{k m}(\mathbf{x}) \leq r\right\} \\
& =\operatorname{Pr}\left\{\left|\left\{i \in[m]: \mathbf{X}_{i} \in \mathbb{B}(\mathbf{x}, r)\right\}\right| \geq k\right\} \\
& =\operatorname{Pr}\left\{B_{m, \mathbf{P}(\mathbb{B}(\mathbf{x}, r))} \geq k\right\}
\end{aligned}
$$

Proof of Proposition *

- Fix $\mathbf{x} \in \mathbb{R}^{d}$ and $u>0$
- Since $F_{U_{k m}(\mathbf{x})}(u)=F_{r_{k m}(\mathbf{x})}\left(\varrho\left(\frac{u}{m}\right)\right)$, we have $F_{U_{k m}(\mathbf{x})}(u)=\operatorname{Pr}\left\{B_{m, P_{m}} \geq k\right\}$ from Lemma 2.1, where $P_{m} \triangleq \mathrm{P}\left(\mathbb{B}\left(\mathbf{x}, \varrho\left(\frac{u}{m}\right)\right)\right)$
- By the Lebesgue differentiation theorem (see, e.g., Rudin [1987]), for a.e. \mathbf{x},

$$
\lim _{m \rightarrow \infty} m P_{m}=\lim _{m \rightarrow \infty} u \frac{\mathrm{P}\left(\mathbb{B}\left(\mathbf{x}, \varrho\left(\frac{u}{m}\right)\right)\right)}{\operatorname{Vol}\left(\mathbb{B}\left(\mathbf{x}, \varrho\left(\frac{u}{m}\right)\right)\right)}=u p(\mathbf{x})
$$

- Therefore, for each $i=0, \ldots, k-1$, we have

$$
\binom{m}{i} P_{m}^{i}\left(1-P_{m}\right)^{m-i}=\frac{i!}{m^{i}}\binom{m}{i}\left(1-P_{m}\right)^{m-i} \frac{\left(m P_{m}\right)^{i}}{i!} \xrightarrow{m \rightarrow \infty} e^{-u p(\mathbf{x})} \frac{(u p(\mathbf{x}))^{i}}{i!}
$$

since $\lim _{m \rightarrow \infty} \frac{i!}{m^{i}}\binom{m}{i}=1$ and $\lim _{m \rightarrow \infty}\left(1-P_{m}\right)^{m-i}=e^{-u p(\mathbf{x})}$

- This leads us to concludes that

$$
\lim _{m \rightarrow \infty} \operatorname{Pr}\left\{U_{k m}(\mathbf{x})>u\right\}=\sum_{i=0}^{k-1} e^{-u p(\mathbf{x})} \frac{u p(\mathbf{x})^{i}}{i!}=\operatorname{Pr}\left\{U_{k \infty}(\mathbf{x})>u\right\}
$$

How to Choose the Function ϕ_{k} ?

- Observe

$$
\begin{align*}
\mathbb{E}_{\mathbf{X}_{1: m}}\left[\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right)\right] & =\mathbb{E}_{\mathbf{X}_{1: m}}\left[\frac{1}{m} \sum_{i=1}^{m} \phi_{k}\left(U_{k m}\left(\mathbf{X}_{i}\right)\right)\right] \\
& =\mathbb{E}_{\mathbf{X}_{m}}\left[\phi_{k}\left(U_{k m}\left(\mathbf{X}_{m}\right)\right)\right]=\mathbb{E}_{\mathbf{X}}\left[\phi_{k}\left(U_{k, m-1}(\mathbf{X})\right)\right] \tag{*}
\end{align*}
$$

- Since $U_{k, m-1}(\mathrm{x}) \xrightarrow{d} U_{k \infty}(\mathrm{x}) \sim \mathrm{G}(k, p(\mathrm{x}))$ by Proposition \star, we expect

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \mathbb{E}_{\mathbf{X}_{1: m}}\left[\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right)\right] \stackrel{(*)}{=} \lim _{m \rightarrow \infty} \mathbb{E}\left[\phi_{k}\left(U_{k, m-1}(\mathbf{X})\right)\right] \\
& \stackrel{(?)}{=} \mathbb{E}\left[\phi_{k}\left(U_{k \infty}(\mathbf{X})\right)\right]
\end{aligned}
$$

- Hence, the desired unbiasedness might be attained if we choose ϕ_{k} such that

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{k}\left(U_{k \infty}(\mathbf{X})\right)\right]=T_{f}(p) \\
\Leftrightarrow & \int \mathbb{E}\left[\phi_{k}\left(U_{k \infty}(\mathrm{x})\right)\right] p(\mathbf{x}) \mathrm{d} \mathbf{x}=\int f(p(\mathrm{x})) p(\mathbf{x}) \mathrm{d} \mathbf{x} \\
\Leftarrow & \mathbb{E}\left[\phi_{k}(U)\right]=f(p) \quad \text { for } U \sim \mathrm{G}(k, p)
\end{aligned}
$$

The Estimator Function via Inverse Laplace Transform

- Given f and $k \geq 1$, we choose ϕ_{k} such that for every $p>0$, if $U \sim \mathrm{G}(k, p)$, then

$$
\begin{aligned}
f(p) & =\mathbb{E}\left[\phi_{k}(U)\right] \\
& =\int_{0}^{\infty} \phi_{k}(u) \frac{p^{k}}{\Gamma(k)} u^{k-1} e^{-p u} \mathrm{~d} u \\
& =\frac{p^{k}}{\Gamma(k)} \mathcal{L}\left\{u^{k-1} \phi_{k}(u)\right\}(p),
\end{aligned}
$$

where $\mathcal{L}\{\cdot\}$ represents the one-sided Laplace transform, defined as

$$
\mathcal{L}\{g(u)\}(p) \triangleq \int_{0}^{\infty} g(\tilde{u}) e^{-p \tilde{u}} \mathrm{~d} \tilde{u}
$$

- Rearranging the terms leads to defining the estimator function ϕ_{k} for f with parameter k :

$$
\phi_{k}(u) \triangleq \frac{\Gamma(k)}{u^{k-1}} \mathcal{L}^{-1}\left\{\frac{f(p)}{p^{k}}\right\}(u)
$$

The Proposed Estimator

- Given f and k, define

$$
\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right) \triangleq \frac{1}{m} \sum_{i=1}^{m} \phi_{k}\left(U_{k m}\left(\mathbf{X}_{i}\right)\right)
$$

where

$$
\phi_{k}(u) \triangleq \frac{\Gamma(k)}{u^{k-1}} \mathcal{L}^{-1}\left\{\frac{f(p)}{p^{k}}\right\}(u)
$$

if the inverse Laplace transform exists

- This estimator unifies almost all existing bias-corrected estimators, and is new for several other density functionals
- This is different from the existing bias-correction approaches such as [Singh and Póczos, 2016] and more widely applicable

The Proposed Estimator: Examples

Table: Examples of functionals of one density and their estimator functions $\phi_{k}(u)$. The last column presents a pair of exponents $\left(a_{k}, b_{k}\right)$ of the polynomial envelope of the estimator function $\phi_{k}(u)$. The constant ϵ, if any, can be chosen as an arbitrarily small positive number. For the first three examples, $k>-a_{k}$ is required to guarantee the existence of the corresponding inverse Laplace transform.

Name	$T_{f}(p)=\mathbb{E}_{p}[f(p)]$	$\phi_{k}(u)=\frac{\Gamma(k)}{u^{k-1}} \mathcal{L}^{-1}\left\{\frac{f(p)}{p^{k}}\right\}(u)$	$\left(a_{k}, b_{k}\right)$
Differential entropy	$\mathbb{E}\left[\ln \frac{1}{p}\right]$	$\ln u-\Psi(k)$	$(-\epsilon, \epsilon)$
α-entropy $(\alpha \geq 0)$	$\mathbb{E}\left[p^{\alpha-1}\right]$	$\frac{\Gamma(k)}{\Gamma(k-\alpha+1)}\left(\frac{1}{u}\right)^{\alpha-1}$	$(1-\alpha, 1-\alpha)$
Logarithmic α-entropy $(\alpha>0)$	$\mathbb{E}\left[p^{\alpha-1} \ln \frac{1}{p}\right]$	$\frac{\Gamma(k)}{\Gamma(k-\alpha+1)} u^{-\alpha+1}(\ln u-\Psi(k-\alpha+1))$	$(1-\alpha-\epsilon, 1-\alpha+\epsilon)$
Exponential (α, β)-entropy $(\alpha>0, \beta \geq 0)$	$\mathbb{E}\left[p^{\alpha-1} e^{-\beta p}\right]$	$\frac{\Gamma(k)}{\Gamma(k-\alpha+1)} \frac{(u-\beta)^{k-\alpha}}{u^{k-1}} \mathbb{1}_{[\beta, \infty)}(u)$	$(0,1-\alpha)$ for $k \geq \alpha$

The Proposed Estimator with Two Densities

- Recall $\mathbf{X}_{1: m} \sim p$ and $\mathbf{Y}_{1: n} \sim q$
- Given f and k, l, define

$$
\hat{T}_{f}^{(k, l)}\left(\mathbf{X}_{1: m}, \mathbf{Y}_{1: n}\right) \triangleq \frac{1}{m} \sum_{i=1}^{m} \phi_{k l}\left(U_{k m}\left(\mathbf{X}_{i}\right), V_{l n}\left(\mathbf{X}_{i}\right)\right)
$$

where

$$
\phi_{k l}(u, v) \triangleq \frac{\Gamma(k) \Gamma(l)}{u^{k-1} v^{l-1}} \mathcal{L}^{-1}\left\{\frac{f(p, q)}{p^{k} q^{l}}\right\}(u, v)
$$

if the inverse Laplace transform exists

The Proposed Estimator with Two Densities: Examples

Table: Examples of functionals of two densities and their estimator functions $\phi_{k l}(u, v)$.

Name	$T_{f}(p, q)=\mathbb{E}_{p}[f(p, q)]$	$\phi_{k l}(u, v)=\frac{\Gamma(k) \Gamma(l)}{u^{k-1} v^{l-1}} \mathcal{L}^{-1}\left\{\frac{f(p, q)}{p^{k} q^{l}}\right\}(u, v)$	$\begin{aligned} & \left(a_{k l}, b_{k l}\right) ; \\ & \left(\tilde{a}_{k l}, \tilde{b}_{k l}\right) \end{aligned}$
KL divergence	$\mathbb{E}\left[\ln \frac{p}{q}\right]$	$\ln \frac{v}{u}+\Psi(k)-\Psi(l)$	$\begin{aligned} & (-\epsilon, \epsilon) ; \\ & (-\epsilon, \epsilon) \end{aligned}$
α-divergence $(\alpha>0)$	$\mathbb{E}\left[\left(\frac{p}{q}\right)^{\alpha-1}\right]$	$\frac{\Gamma(k) \Gamma(l)}{\Gamma(k-\alpha+1) \Gamma(l+\alpha-1)}\left(\frac{v}{u}\right)^{\alpha-1}$	$\begin{aligned} & (1-\alpha, 1-\alpha) ; \\ & (\alpha-1, \alpha-1) \end{aligned}$
Logarithmic α-divergence $(\alpha>0)$	$\mathbb{E}\left[\left(\frac{p}{q}\right)^{\alpha-1} \ln \frac{p}{q}\right]$	$\begin{aligned} & \frac{\Gamma(k) \Gamma(l)}{\Gamma(k-\alpha+1) \Gamma(l+\alpha-1)}\left(\frac{v}{u}\right)^{\alpha-1} \times \\ & \left(\ln \frac{v}{u}+\Psi(k-\alpha+1)-\Psi(l+\alpha-1)\right) \end{aligned}$	$\begin{aligned} & (1-\alpha-\epsilon, 1-\alpha+\epsilon) ; \\ & (\alpha-1-\epsilon, \alpha-1+\epsilon) \end{aligned}$
Le Cam distance	$\mathbb{E}\left[\frac{(p-q)^{2}}{2 p(p+q)}\right]$	$\begin{aligned} 2\binom{k+l-2}{k-1}^{-1}\left\{\sum_{j=0}^{l-1}\binom{k+l-2}{k-1+j}\left(-\frac{u}{v}\right)^{j}-\right. \\ \left.\left(-\frac{u}{v}\right)^{l-1}\left(1-\frac{v}{u}\right)^{k+l-2} \mathbb{1}_{[v, \infty)}(u)\right\} \end{aligned}$	$\begin{aligned} & (-k+1, l-1) ; \\ & (-l+1, k-1) \end{aligned}$
Entropy difference $(\mathrm{Q} \ll \mathrm{P})$	$\mathbb{E}\left[\ln \frac{1}{p}-\frac{q}{p} \ln \frac{1}{q}\right]$	$\frac{(l-1)}{k} \frac{u}{v}(\Psi(l-1)-\ln v)-(\Psi(k)-\ln u)$	$\begin{aligned} & (-\epsilon, 1) ; \\ & (-1-\epsilon,-1+\epsilon) \end{aligned}$
Reverse KL divergence $(\mathrm{Q} \ll \mathrm{P})$	$\mathbb{E}\left[\frac{q}{p} \ln \frac{q}{p}\right]$	$\frac{l-1}{k} \frac{u}{v}\left(\ln \frac{u}{v}+\Psi(l-1)-\Psi(k+1)\right)$	$\begin{aligned} & \hline(1-\epsilon, 1+\epsilon) ; \\ & (-1-\epsilon,-1+\epsilon) \\ & \hline \end{aligned}$
Jensen-Shannon divergence $(\mathrm{Q} \ll \mathrm{P})$	$\mathbb{E}\left[\frac{1}{2} \ln \frac{2 p}{p+q}+\frac{q}{2 p} \ln \frac{2 q}{p+q}\right]$	(omitted; see paper)	$\begin{aligned} & (-k+1, l-1) ; \\ & (-l+1, k-1) \end{aligned}$

Theoretical Guarantees and Proofs

Polynomial Envelope

- Wish to analyze the estimator in a unified manner for general functionals
- Idea: abstract tail behaviors of the estimator function $\phi_{k}(u)$ (i.e., how $\phi_{k}(u)$ varies when $u \downarrow 0$ and $u \uparrow \infty)$ by a pair of constants $\left(a_{k}, b_{k}\right) \in \mathbb{R}^{2}$ such that

$$
\left|\phi_{k}(u)\right| \lesssim \psi_{a_{k}, b_{k}}(u)
$$

where we define a piecewise polynomial function $\psi_{a, b}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ for $a, b \in \mathbb{R}$ as

$$
\psi_{a, b}(u) \triangleq \begin{cases}u^{a} & \text { if } 0<u \leq 1 \tag{6}\\ u^{b} & \text { if } u>1\end{cases}
$$

- As a gets larger, $\psi_{a, b}(u)$ decays faster as $u \downarrow 0$
$\Rightarrow a$ quantifies the amount of contribution of low density values through $\phi_{k}(u)$
- As b gets smaller, $\psi_{a, b}(u)$ decays faster as $u \uparrow \infty$ $\Rightarrow b$ quantifies the amount of contribution of high density values through $\phi_{k}(u)$
- We will establish stronger statements for functionals with larger a and smaller b

Examples

Example 3.1 (Differential entropy [Kozachenko and Leonenko, 1987])

For $f(p)=\ln (1 / p)$ and any $k \geq 1$, we can compute

$$
\phi_{k}(u)=\ln u-\Psi(k) .
$$

As a bound on the estimator function $\phi_{k}(u)$, we consider

$$
\left|\phi_{k}(u)\right| \lesssim|\ln u|+1 \lesssim \psi_{-\epsilon, \epsilon}(u)
$$

for any arbitrarily small $\epsilon>0$ throughout the paper ${ }^{a}$
${ }^{a}$ A finer analysis without relying on the polynomial bound $\psi_{-\epsilon, \epsilon}(u)$ may lead to a marginal improvement in the resulting performance guarantee [Gao et al., 2018, Bulinski and Dimitrov, 2019a,b].

Examples

Example 3.2 (α-entropy [Leonenko et al., 2008])

- For $f(p)=p^{\alpha-1}(\alpha \geq 0)$, we refer to the density functional $T_{f}(p)=\int p^{\alpha}(\mathbf{x}) \mathrm{d} \mathbf{x}$ as the α-entropy
- In the literature, this functional appears in Rényi [1961] entropy $h_{\alpha}(p)=\left(\ln T_{f}(p)\right) /(1-\alpha)$ and Harvda and Charvat [1967] or Tsallis [1988] entropy $\tilde{h}_{\alpha}(p)=\left(1-T_{f}(p)\right) /(\alpha-1)$
- For any $k \in \mathbb{N}$ such that $k>\alpha-1$, we can compute

$$
\phi_{k}(u)=\frac{\Gamma(k)}{\Gamma(k-\alpha+1)}\left(\frac{1}{u}\right)^{\alpha-1}
$$

which allows the tight polynomial bound

$$
\left|\phi_{k}(u)\right| \lesssim \psi_{1-\alpha, 1-\alpha}(u)
$$

Asymptotic L_{2}-consistency

Local Extremal Operators

- The standard simplifying assumptions: there exist $c>0$ and $C>0$ such that

$$
c \leq p(\mathbf{x}) \leq C \text { for any } \mathbf{x} \in \operatorname{supp}(p)
$$

- Instead, we consider weaker conditions than the boundedness assumptions, adopting conditions from [Bulinski and Dimitrov, 2019a,b].
- For each $r>0$, define the local extremal operators on \mathbb{R}^{d} for a density p by

$$
\begin{array}{ll}
\text { (local maximal operator) } & M_{r} p(\mathbf{x}) \triangleq \sup _{r^{\prime} \in(0, r]} \frac{\mathrm{P}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right)\right)}{\operatorname{Vol}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right)\right)}, \\
\text { (local minimal operator) } & m_{r} p(\mathbf{x}) \triangleq \inf _{r^{\prime} \in(0, r]} \frac{\mathrm{P}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right)\right)}{\operatorname{Vol}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right)\right)}
\end{array}
$$

- $m_{r} p(\mathrm{x}) \leq p(\mathrm{x}) \leq M_{r} p(\mathrm{x})$
- By the Lebesgue differentiation theorem, $M_{r} p(\mathbf{x}) \downarrow p(\mathbf{x})$ and $m_{r} p(\mathbf{x}) \uparrow p(\mathbf{x})$ as $r \downarrow 0$, for p-a.e. \mathbf{x}
- For each $r>0, \mathbf{x} \mapsto M_{r} p(\mathbf{x})$ and $\mathbf{x} \mapsto m_{r} p(\mathbf{x})$ are lower- and upper-semicontinuous, respectively, and so are Borel measurable [Bulinski and Dimitrov, 2019a,b]

Functionals Based on Local Extremal Operators

- Given a non-decreasing function $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, for densities p and \tilde{p}, define

$$
(\text { upper bound on } p) \quad W(p, \tilde{p} ; \vartheta, r) \triangleq \int p(\mathbf{x})\left(M_{r} \tilde{p}(\mathbf{x})\right)^{\vartheta} \mathrm{d} \mathbf{x}
$$

(lower bound on p) $w(p, \tilde{p} ; \xi, \vartheta, r) \triangleq \int p(\mathbf{x}) \xi\left(\left(m_{r} \tilde{p}(\mathbf{x})\right)^{-\vartheta}\right) \mathrm{d} \mathbf{x}$,
(bounded support) $R(p, \tilde{p} ; \xi, \vartheta, r) \triangleq \iint_{\rho(\mathbf{x}, \mathbf{y})>r} p(\mathbf{x}) \tilde{p}(\mathbf{y}) \xi\left(v^{\vartheta}(\rho(\mathbf{x}, \mathbf{y}))\right) \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{y}$
for each $\vartheta>0$ and $r>0$

- Note: $R(p, \tilde{p} ; \xi, \vartheta, r) \rightarrow 0$ as $r \rightarrow \infty$
- As the tails of p and \tilde{p} decay faster, so does $R(p, \tilde{p} ; \xi, \vartheta, r)$
- In particular, if p and \tilde{p} have bounded support, then $R(p, \tilde{p} ; \xi, \vartheta, r)=0$ for $r \gg 1$
- Note: W, w, and R become larger as ϑ increases

Regularity Conditions

- Given $k \in \mathbb{N}$ and $(a, b) \in \mathbb{R}^{2}$, consider the following conditions
$\left(\mathrm{U}_{p \tilde{p}} ; k, a\right)$ Either $a \geq 0$, or if $a<0$, then there exists $r>0$ such that $W(p, \tilde{p} ; k, r)<\infty$
$\left(\mathrm{L}_{p \tilde{p}} ; \xi, b\right)$ Either $b \leq 0$, or if $b>0$, then there exists $r>0$ such that $w(p, \tilde{p} ; \xi, b, r)<\infty$ and

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \xi\left(m^{b}\right) R\left(p, \tilde{p} ; \xi, b, \varrho\left(\frac{\kappa_{m}}{m}\right)\right)<\infty \tag{7}
\end{equation*}
$$

for some κ_{m} such that $\kappa_{m} / m \rightarrow \infty$ and $\left(\ln \kappa_{m}\right) / m \rightarrow 0$ as $m \rightarrow \infty$

- Recall: the polynomial tail exponents a and b of $\phi_{k}(u)$ quantify the amount of contribution of high and low density values to the estimator, resp.
- Hence, $a \leftrightarrow W$ that captures the upper boundedness of the density; while $b \leftrightarrow w$ and R that quantify the lower boundedness
- Note: as a gets larger, k gets smaller, and b gets smaller, conditions ($\left.\mathbf{L}_{p p} ; \xi, b\right)$ and $\left(\mathbf{U}_{p p} ; k, a\right)$ become weaker, thus encompassing a larger class of densities.

L_{2}-consistency

- Let Ξ be the class of non-decreasing functions $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

1. $\xi(t) / t \rightarrow \infty$ as $t \rightarrow \infty$;
2. $\xi\left(t_{1} t_{2}\right) \leq \xi\left(t_{1}\right) \xi\left(t_{2}\right)$ for any $x, y>t_{0}$ for some $t_{0} \in \mathbb{R}_{+}$;
3. $\omega(\xi) \triangleq \inf \left\{\eta>1: \xi(t) / t^{\eta} \rightarrow 0\right.$ as $\left.t \rightarrow \infty\right\}<\infty$

- Examples: $\xi_{1}(t)=(t \ln t) \vee 0 \in \Xi$ with $t_{0}=e$ and $\omega\left(\xi_{1}\right)=1$;

$$
\xi_{2}(t)=t^{\alpha} \in \Xi \text { for } \alpha>1 \text { with } t_{0}=0 \text { and } \omega\left(\xi_{2}\right)=\alpha
$$

- Bias-variance decomposition of mean-squared error (MSE):

$$
\begin{aligned}
\mathbb{E}\left[\left(\hat{T}_{f}\left(\mathbf{X}_{1: m}\right)-T_{f}(p)\right)^{2}\right] & =\left(\mathbb{E}\left[\hat{T}_{f}\left(\mathbf{X}_{1: m}\right)\right]-T_{f}(p)\right)^{2}+\operatorname{Var}\left(\hat{T}_{f}\left(\mathbf{X}_{1: m}\right)\right) \\
& =(\text { bias })^{2}+(\text { variance })
\end{aligned}
$$

- Analyzing the bias is often involved, and controlling the variance is relatively easier

L_{2}-consistency (Cont'd)

Theorem 3.3 (Vanishing bias)

For $T_{f}(\cdot)$, if ϕ_{k} is continuous and p satisfies $\left(U_{p p} ; k, a\right)$ and $\left(L_{p p} ; \xi, b\right)$ with some function $\xi \in \Xi$, then the estimator (5) with fixed $k>-\omega(\xi) a$ is asymptotically unbiased

Theorem 3.4 (Vanishing variance)

For $T_{f}(\cdot)$, if p satisfies $\left(U_{p p} ; k, a\right)$ and $\left(L_{p p} ; \xi, b\right)$ with $\xi(t)=t^{2}$, the variance of the estimator (5) with fixed $k>-2 a$ converges to zero as $m \rightarrow \infty$

Corollary 3.5 (L_{2}-consistency)
For $T_{f}(\cdot)$, if ϕ_{k} is continuous and p satisfies $\left(\mathbf{U}_{p p} ; k, a\right)$ and $\left(\boldsymbol{L}_{p p} ; \xi, b\right)$ with $\xi(t)=t^{2}$, then the estimator (5) with fixed $k>-2 a$ is L_{2}-consistent

Examples

Example 3.6 (Differential entropy; Example 3.1 contd.)

- Recall: for any $k \in \mathbb{N},\left|\phi_{k}(u)\right| \lesssim \psi_{-\epsilon, \epsilon}(u)$ for arbitrarily small $\epsilon>0$
- By Corollary 3.5, the estimator (5) is L_{2}-consistent if p satisfies that $\left(\mathbf{U}_{p p} ; k,-\epsilon\right)$ and $\left(\mathbf{L}_{p p} ; \xi, \epsilon\right)$ with $\xi(t)=t^{2}$ for some $\epsilon>0$
- We note that the condition (7) in $\left(\mathrm{L}_{p p} ; \xi, \epsilon\right)$ can be relaxed to a milder condition in which there exist some $\delta, R>0$ such that

$$
\iint_{\rho(\mathbf{x}, \mathbf{y})>R} p(\mathbf{x}) p(\mathbf{y})|\ln v(\rho(\mathbf{x}, \mathbf{y}))|^{\delta} \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}<\infty
$$

by performing a similar analysis based on the upper bound $\left|\phi_{k}(u)\right| \lesssim|\ln u|+1$

- This recovers a similar result reported in [Bulinski and Dimitrov, 2019b]

Examples

Example 3.7 (α-entropy; Example 3.2 contd.)

- Recall that for any $k \in \mathbb{N},\left|\phi_{k}(u)\right| \lesssim \psi_{1-\alpha, 1-\alpha}(u)$
- For $\alpha>1$, since $b=1-\alpha<0$, the estimator with fixed $k>2(\alpha-1)$ is L_{2}-consistent if p satisfies $\left(\mathbf{U}_{p p} ; k, a\right)$, which slightly generalizes the upper-boundedness condition and the requirement $k>2 \alpha-1$ assumed in [Leonenko et al., 2008]
- For $\alpha<1$, since $a=1-\alpha>0$, the estimator with fixed $k \geq 1$ is L_{2}-consistent if p satisfies $\left(\mathrm{L}_{p p} ; \xi, b\right)$ with $\xi(t)=t^{2}$, for examples, if p is bounded away from zero and supported over a hyperrectangle (Leonenko and Pronzato [2010] reported the L_{2}-consistency of the estimator for densities satisfying alternative conditions when $\alpha<1$)

Proof of Theorem 3.3 (Vanishing Bias)

- Since ϕ_{k} is continuous, from Proposition \star, we have $\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right) \xrightarrow{d} \phi_{k}\left(U_{k \infty}(\mathbf{X})\right)$ as $m \rightarrow \infty$ by the continuous mapping theorem, where $U_{k \infty}(\mathbf{x})$ is a $\mathrm{G}(k, p(\mathbf{x}))$ random variable, independent of $\mathbf{X} \sim p$ for P-a.e. \mathbf{x}
- Recall: a collection of random variables $\left(X_{i}\right)_{i \in I}$ is said to be uniformly integrable (U.I.) if for any $\epsilon>0$, there exists $K \geq 0$ such that $\sup _{i \in I} \mathbb{E}\left[X_{i} \mathbb{1}_{[K, \infty)}\left(X_{i}\right)\right] \leq \epsilon$
- Proposition: if $\left(X_{n}\right)_{n \in \mathbb{N}}$ is U.I. and $X_{n} \xrightarrow{d} X_{\infty}$, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{\infty}\right]
$$

- Hence, if the sequence of random variables $\left(\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right)_{m \geq 1}$ is U.I., the asymptotic unbiasedness readily follows:

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \mathbb{E}\left[\hat{T}_{f}^{(k)}\left(\mathbf{X}_{1: m}\right)\right]=\lim _{m \rightarrow \infty} \mathbb{E}\left[\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right] \\
& \stackrel{(\text { U.I.? }}{=} \mathbb{E}\left[\phi_{k}\left(U_{k \infty}(\mathbf{X})\right)\right]=T_{f}(p)
\end{aligned}
$$

Proof of Theorem 3.3 (Vanishing Bias) (Cont'd)

- To show the uniform integrability of $\left(\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right)_{m \geq 1}$, we invoke:

Lemma 3.8 (De la Vallée Poussin theorem [Borkar, 1995, Theorem 1.3.4])
A collection of random variables $\left(X_{i}\right)_{i \in I}$ is uniformly integrable $\Leftrightarrow \exists$ a non-decreasing function $\xi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

1. $\sup _{i \in I} \mathbb{E}\left[\xi\left(\left|X_{i}\right|\right)\right]<\infty$; and
2. $\lim _{t \rightarrow \infty} \frac{\xi(t)}{t}=\infty$

- (This is why we introduced the class of functions Ξ)
- The second condition is satisfied since $\xi \in \Xi$ by assumption
- Only need to check the first condition
- We will plug-in $X_{i} \leftarrow \phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)$

Proof of Theorem 3.3 (Vanishing Bias) (Cont'd)

- Observe that we have

$$
\begin{aligned}
\mathbb{E}\left[\xi\left(\left|\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right|\right)\right] & =\int p(\mathbf{x}) \mathbb{E}\left[\xi\left(\left|\phi_{k}\left(U_{k, m-1}(\mathbf{x})\right)\right|\right)\right] \mathrm{d} \mathbf{x} \\
& \lesssim \int p(\mathbf{x}) \mathbb{E}\left[\xi\left(\psi_{a, b}\left(U_{k m}(\mathbf{x})\right)\right)\right] \mathrm{d} \mathbf{x} \quad \text { (polynomial envelope) }
\end{aligned}
$$

- Since $\xi \in \Xi$, we have $-\int_{0}^{1} u^{k} \mathrm{~d} \xi\left(u^{a \wedge 0}\right)<\infty$ for $k>-\omega(\xi) a$ and $\int_{0}^{\infty} e^{-t} \xi\left(t^{b \vee 0}\right) \mathrm{d} t<\infty$, and thus we can apply Lemma 3.9 (next slide), which yields

$$
\limsup _{m \rightarrow \infty} \mathbb{E}\left[\xi\left(\left|\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right|\right)\right] \lesssim \limsup _{m \rightarrow \infty} \int p(\mathrm{x}) \mathbb{E}\left[\xi\left(\psi_{a, b}\left(U_{k m}(\mathrm{x})\right)\right)\right] \mathrm{d} \mathrm{x}<\infty
$$

- This ensures the uniform integrability of $\left(\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right)_{m \geq 1}$ by the de la Vallée Poussin theorem, and thus concludes the proof

A Technical Lemma

Lemma 3.9

Assume that $-\int_{0}^{1} u^{k} \mathrm{~d} \xi\left(u^{a \wedge 0}\right)<\infty$ and $\int_{0}^{\infty} e^{-t} \xi\left(t^{b \vee 0}\right) \mathrm{d} t<\infty$. If the density p satisfies $\left(U_{p p} ; k, a\right)$ and $\left(L_{p p} ; \xi, b\right)$, we have

$$
\limsup _{m \rightarrow \infty} \int p(\mathbb{x}) \mathbb{E}\left[\xi\left(\psi_{a, b}\left(U_{k m}(\mathbf{x})\right)\right)\right] \mathrm{d} \mathbf{x}<\infty
$$

- The proof is rather involved
- Idea: Break the inner integral over $(0, \infty)$ over four intervals $(0,1),\left(1, \nu_{m}\right),\left(\nu_{m}, \kappa_{m}\right),\left(\kappa_{m}, \infty\right)$, and analyze each term by bounding the cumulative density function of $U_{k m}(\mathbf{x})$

A Generic Lemma for Bounding Variance

Lemma 3.10 ([Singh and Póczos, 2016])

For a given function $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$, let $\zeta_{k}\left(\mathbf{x} \mid \mathbf{x}_{1: m}\right) \triangleq \phi\left(r_{k}\left(\mathbf{x} \mid \mathbf{x}_{1: m}\right)\right)$ for any points $\mathbf{x}, \mathbf{x}_{1: m}$ in the d-dimensional Euclidean space $\left(\mathbb{R}^{d},\|\cdot\|\right)$. Let

$$
\begin{equation*}
\Phi\left(\mathbf{x}_{1: m}\right)=\frac{1}{m} \sum_{i=1}^{m} \zeta_{k}\left(\mathbf{x}_{i} \mid \mathbf{x}_{1: m}^{\sim i}\right) \tag{8}
\end{equation*}
$$

If the samples $\mathbf{X}_{1: m}$ are i.i.d., then

$$
\begin{aligned}
\operatorname{Var}\left(\Phi\left(\mathbf{X}_{1: m}\right)\right) \leq \frac{2\left(1+k \gamma_{d}\right)}{m}\{(& 2 k+1) \mathbb{E}\left[\zeta_{k}^{2}\left(\mathbf{X}_{m} \mid \mathbf{X}_{1: m-1}\right)\right] \\
& \left.+2 k \mathbb{E}\left[\zeta_{k+1}^{2}\left(\mathbf{X}_{m} \mid \mathbf{X}_{1: m-1}\right)\right]\right\}
\end{aligned}
$$

where $\gamma_{d} \in \mathbb{N}$ is a constant which depends only on d

Proof Techniques for the Variance Lemma

Lemma 3.11 (Efron-Stein inequality [Efron and Stein, 1981, Steele, 1986])

Let X_{1}, \ldots, X_{n} be independent random variables, and let $g\left(X_{1: n}\right)=g\left(X_{1}, \ldots, X_{n}\right)$ be a square-integrable function of X_{1}, \ldots, X_{n}.
Then if $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ are independent copies of X_{1}, \ldots, X_{n}, we have

$$
\operatorname{Var}\left(g\left(X_{1: n}\right)\right) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\left|g\left(X_{1: n}\right)-g\left(X_{1: i-1} X_{i}^{\prime} X_{i+1: n}\right)\right|^{2}\right]
$$

Lemma 3.12 ([Biau and Devroye, 2015, Lemma 20.6])

In $\left(\mathbb{R}^{d},\|\cdot\|\right)$, there exists a constant $\gamma_{d}>0$ which depends only on d such that for any $m \in \mathbb{N}$ and for any distinct points $\mathbf{x}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{d}$,

$$
\sum_{i=1}^{m} \mathbb{1}_{N_{k}\left(\mathbf{x}_{i} \mid \mathbf{x}_{1: m}^{\sim i}, \mathbf{x}\right)}(\mathbf{x}) \leq k \gamma_{d}
$$

Proof of Theorem 3.4 (Vanishing Variance)

- By Lemma 3.10 for the Euclidean space $\left(\mathbb{R}^{d},\|\cdot\|\right)$, we have

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{T}_{f}^{(k)}\right) \leq \frac{2\left(1+k \gamma_{d}\right)}{m}\left\{(2 k+1) \mathbb{E}\left[\phi_{k}^{2}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right]\right. \\
&\left.+2 k \mathbb{E}\left[\phi_{k}^{2}\left(U_{k+1, m-1}\left(\mathbf{X}_{m}\right)\right)\right]\right\}
\end{aligned}
$$

where γ_{d} is a constant which only depends on d; see Lemma 3.10

- Since $\xi(t)=t^{2}$ and $k>-2 a$ imply that $-\int_{0}^{1} u^{k} \mathrm{~d} \xi\left(u^{a \wedge 0}\right)<\infty$ and $\int_{0}^{\infty} e^{-t} \xi\left(t^{b \vee 0}\right) \mathrm{d} t<\infty$, we can apply Lemma 3.9 , which ensures for $k^{\prime} \in\{k, k+1\}$ that

$$
\limsup _{m \rightarrow \infty} \mathbb{E}\left[\phi_{k}^{2}\left(U_{k^{\prime}, m-1}\left(\mathbf{X}_{m}\right)\right)\right]<\infty
$$

- It establishes $\operatorname{Var}\left(\hat{T}_{f}^{(k)}\right)=O\left(m^{-1}\right)$ for m sufficiently large

L_{2}-Convergence Rates

Boundedness Conditions

Upper bound

$\left(\mathrm{U}_{p}\right)$ there exists $0<C_{p}<\infty$ such that $p(\mathbf{x}) \leq C_{p}$ almost everywhere (a.e.)

Lower bound

$\left(\mathrm{L} 1_{p}\right)$ there exists $c_{p}>0$ such that $p(\mathbf{x}) \geq c_{p}$ for $\mathbf{x} \in \operatorname{supp}(p)$;
$\left(\mathrm{L} 2_{p}\right)$ the support of p is bounded;
$\left(\mathrm{L} 3_{p}\right)$ there exists $r>0$ such that

$$
\eta_{p} \triangleq \inf _{\mathbf{x} \in \operatorname{supp}(p)} \inf _{r^{\prime} \in(0, r]} \frac{\operatorname{Vol}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right) \cap \operatorname{supp}(p)\right)}{\operatorname{Vol}\left(\mathbb{B}\left(\mathbf{x}, r^{\prime}\right)\right)}>0
$$

Boundedness Conditions

Remark 3.1

- The upper-boundedness condition $\left(\mathbf{U}_{p}\right)$ implies $\left(\mathbf{U}_{p p} ; k, a\right)$, since $M_{r} p(\mathbf{x}) \leq C_{p}<\infty$ for every $\mathbf{x} \in \mathbb{R}^{d}$ and any $r>0$
- Also, the lower-boundedness conditions $\left(\mathbf{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right)$, and $\left(\mathrm{L} 3_{p}\right)$ imply $\left(\mathrm{L}_{p p} ; \xi, b\right)$ for any nonnegative function ξ, since for $b>0$ we have

$$
\begin{aligned}
w(p, p ; \xi, b, r) & =\int p(\mathbf{x}) \xi\left(\left(m_{r} p(\mathbf{x})\right)^{-b}\right) \mathrm{d} \mathbf{x} \\
& \leq \int p(\mathbf{x}) \xi\left(\left(\eta_{p} c_{p}\right)^{-b}\right) \mathrm{d} \mathbf{x}=\xi\left(\left(\eta_{p} c_{p}\right)^{-b}\right)<\infty
\end{aligned}
$$

for some $r>0$ by $\left(\mathrm{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right)$, and $\left(\mathrm{L} 3_{p}\right)$, and

$$
\left.R\left(p, p ; \xi, b, \varrho\left(\kappa_{m} / m\right)\right)\right)=0
$$

for m sufficiently larger than an absolute constant, by ($\mathrm{L} 2_{p}$)

Variance Rate

Theorem 3.13 (Variance rate)

For $T_{f}(\cdot)$, if p satisfies $\left(U_{p}\right),\left(L 1_{p}\right),\left(L 2_{p}\right)$, and $\left(L 3_{p}\right)$, then the estimator (5) with fixed $k>-2 a$ satisfies

$$
\begin{equation*}
\operatorname{Var}\left(\hat{T}_{f}^{(k)}\right)=O\left(m^{-1}\right) \tag{9}
\end{equation*}
$$

Proof of Theorem 3.13 (Variance Rate)

- Recall: By Lemma 3.10 for the Euclidean space $\left(\mathbb{R}^{d},\|\cdot\|\right)$, we have

$$
\operatorname{Var}\left(\hat{T}_{f}^{(k)}\right) \leq \frac{2\left(1+k \gamma_{d}\right)}{m}\left\{(2 k+1) \mathbb{E}\left[\phi_{k}^{2}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right]+2 k \mathbb{E}\left[\phi_{k}^{2}\left(U_{k+1, m-1}\left(\mathbf{X}_{m}\right)\right)\right]\right\}
$$

where γ_{d} is a constant which only depends on d; see Lemma 3.10

- Since the boundedness conditions $\left(\mathrm{U}_{p}\right),\left(\mathrm{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right)$, and $\left(\mathrm{L} 3_{p}\right)$ imply stronger conditions than $\left(\mathbf{U}_{p p} ; k, a\right)$ and $\left(\mathrm{L}_{p p} ; \xi, b\right)$ (see Remark 3.1), we can prove:

Lemma 3.14

Assume that $-\int_{0}^{1} u^{k} \mathrm{~d} \xi\left(u^{a \wedge 0}\right)<\infty$ and $\int_{0}^{\infty} e^{-t} \xi\left(t^{b \vee 0}\right) \mathrm{d} t<\infty$. If the density p satisfies $\left(U_{p}\right),\left(L 1_{p}\right),\left(L 2_{p}\right)$, and $\left(L 3_{p}\right)$, we have

$$
\sup _{m \geq 1} \int p(\mathrm{x}) \mathbb{E}\left[\xi\left(\psi_{a, b}\left(U_{k m}(\mathbf{x})\right)\right)\right] \mathrm{d} \mathbf{x}<\infty
$$

- Hence, the variance rate directly follows by setting $\xi(t)=t^{2}$

Smoothness Conditions

Definition 3.15

For $\sigma>0$, a function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to be σ-Hölder continuous over an open subset $\Omega \subseteq \mathbb{R}^{d}$ if g is continuously differentiable over Ω up to order $\kappa \triangleq\lceil\sigma\rceil-1$ and

$$
\begin{equation*}
L(g ; \Omega) \triangleq \sup _{\substack{\mathbf{r} \in \mathbb{Z}_{+}^{d} \\|\mathbf{r}|=\kappa}} \sup _{\mathbf{y}, \mathbf{z} \in \Omega}^{\mathbf{y} \neq \mathbf{z}} \lll \partial^{\mathbf{r}} g(\mathbf{y})-\partial^{\mathbf{r}} g(\mathbf{z}) \mid, \tag{10}
\end{equation*}
$$

where $\beta \triangleq \sigma-\kappa$. Here we use a multi-index notation (see, e.g., [Folland, 2013, Ch. 8]), that is, $|\mathbf{r}| \triangleq r_{1}+\cdots+r_{d}$ for $\mathbf{r} \in \mathbb{Z}_{+}^{d}$ and $\partial^{\mathbf{r}} g(\mathbf{x}) \triangleq \frac{\partial^{\kappa} g(\mathbf{x})}{\partial x_{1}^{r_{1} \cdots \partial x_{d}^{r_{d}}}}$

Smoothness Conditions (Cont'd)

- Due to the lower-boundedness condition $\left(\mathrm{L1}_{p}\right)$, the density is NOT smooth on the boundary of the support
- Hence, we assume a smoothness condition on the underlying density only over the interior of its support and impose a separate regularity condition on the boundary:

Smoothness

$\left(\mathrm{S}_{p}\right)$ The density p is σ_{p}-Hölder continuous over the interior of $\operatorname{supp}(p)$ for $\sigma_{p} \in(0,2] ;$
$\left(\mathbf{B}_{p}\right)$ the boundary of $\operatorname{supp}(p)$ has finite $(d-1)$-dimensional Hausdorff measure [Folland, 2013]

Bias Rate

Theorem 3.16 (Bias rate)

For $T_{f}(\cdot)$, if p satisfies the conditions $\left(U_{p}\right),\left(L 1_{p}\right),\left(L 2_{p}\right),\left(L 3_{p}\right),\left(S_{p}\right)$, and $\left(B_{p}\right)$, then the estimator (5) with fixed $k>-a$ satisfies

$$
\begin{align*}
& \left|\mathbb{E}\left[\hat{T}_{f}^{(k)}\right]-T_{f}(p)\right|=\tilde{O}\left(m^{-\lambda\left(\sigma_{p}, a, k\right)}\right), \tag{11}\\
& \text { where } \quad \lambda(\sigma, a, k)= \begin{cases}\frac{1}{d}(\sigma \wedge 1)\left(\frac{k+a}{k-1}\right) & \text { if } a \leq-\frac{\sigma}{d}-1, \\
\frac{1}{d}\left(\sigma \wedge \frac{k+a}{k-1}\right) & \text { if }-\frac{\sigma}{d}-1<a \leq-1, \\
\frac{1}{d}(\sigma \wedge 1) & \text { if } a>-1\end{cases} \tag{12}
\end{align*}
$$

Remark 3.2

- The rate exponent λ increases as the lower-tail-polynomial exponent a increases, or equivalently, the estimator function $\phi_{k}(u)$ converges to 0 faster as $u \downarrow 0$
- If a is independent of k (which is true for most cases), the rate exponent λ becomes larger with larger k

Proof of Theorem 3.16 (Bias Rate)

- First note that $U_{k m}\left(\mathbf{X}_{1}\right), \ldots, U_{k m}\left(\mathbf{X}_{m}\right)$ are identically distributed, and $U_{k m}\left(\mathbf{X}_{m}\right)=U_{k, m-1}\left(\mathbf{X}_{m}\right)$. Hence, we can write

$$
\begin{align*}
\mathbb{E}\left[\hat{T}_{f}^{(k)}\right] & =\mathbb{E}\left[\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right)\right] \\
& =\int \mathbb{E}\left[\phi_{k}\left(U_{k, m-1}\left(\mathbf{X}_{m}\right)\right) \mid \mathbf{X}_{m}=\mathbf{x}\right] p(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\int \mathbb{E}\left[\phi_{k}\left(U_{k, m-1}(\mathbf{x})\right)\right] p(\mathbf{x}) \mathrm{d} \mathbf{x} \tag{13}
\end{align*}
$$

where the last equality holds since \mathbf{X}_{m} and $\mathbf{X}_{1: m-1}$ are independent. Recall from Proposition \star that $U_{k m}(\mathbf{x}) \xrightarrow{d} U_{k \infty}(\mathbf{x}) \sim \mathrm{G}(k, p(\mathbf{x}))$ for p-a.e. \mathbf{x}

- Thus, by the construction of $\phi_{k}(u)$, we can express the density functional as

$$
T_{f}(p)=\int f(p(\mathbf{x})) p(\mathbf{x}) \mathrm{d} \mathbf{x}=\int \mathbb{E}\left[\phi_{k}\left(U_{k \infty}(\mathbf{x})\right)\right] p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Proof of Theorem 3.16 (Bias Rate) (Cont'd)

- Applying the triangle inequality, we first have

$$
\begin{align*}
\left|\mathbb{E}\left[\hat{T}_{f}^{(k)}\right]-T_{f}(p)\right| & \leq \int p(\mathbf{x})\left|\mathbb{E}\left[\phi_{k}\left(U_{k, m-1}(\mathbf{x})\right)-\phi_{k}\left(U_{k \infty}(\mathbf{x})\right)\right]\right| \mathrm{d} \mathbf{x} \\
& =\int p(\mathbf{x})\left|\int_{0}^{\infty} \phi_{k}(u)\left(\rho_{U_{k, m-1}(\mathbf{x})}(u)-\rho_{U_{k \infty}(\mathbf{x})}(u)\right) \mathrm{d} u\right| \mathrm{d} \mathbf{x} \tag{14}
\end{align*}
$$

- Pick any $0 \leq \tau_{m} \leq 1 \leq \nu_{m}<\infty$, which are to be determined later as functions of k, a, d, and σ_{p}
- Break the inner integral and apply the polynomial bound $\left|\phi_{k}(u)\right| \lesssim \psi_{a, b}(u)$ with the triangle inequality to obtain

$$
\begin{equation*}
\left|\mathbb{E}\left[\hat{T}_{f}^{(k)}\right]-T_{f}(p)\right| \lesssim I_{\text {out }, 1}+I_{\mathrm{in}, 1}+I_{\mathrm{in}, 2}+I_{\text {out }, 2}, \tag{15}
\end{equation*}
$$

Proof of Theorem 3.16 (Bias Rate) (Cont'd)

- where

$$
\begin{aligned}
& I_{\mathrm{out}, 1} \triangleq \mathbb{E}_{p}\left[I_{\mathrm{out}, 1}(\mathbf{X})\right]=\mathbb{E}_{p}\left[\int_{0}^{\tau_{m}} \psi_{a, b}(u)\left(\rho_{U_{k, m-1}(\mathbf{X})}(u)+\rho_{U_{k \infty}(\mathbf{X})}(u)\right) \mathrm{d} u\right] \\
& I_{\mathrm{in}, 1} \triangleq \mathbb{E}_{p}\left[I_{\mathrm{in}, 1}(\mathbf{X})\right]=\mathbb{E}_{p}\left[\int_{\tau_{m}}^{1} \psi_{a, b}(u)\left|\rho_{U_{k, m-1}(\mathbf{X})}(u)-\rho_{U_{k \infty}(\mathbf{X})}(u)\right| \mathrm{d} u\right] \\
& I_{\mathrm{in}, 2} \triangleq \mathbb{E}_{p}\left[I_{\mathrm{in}, 2}(\mathbf{X})\right]=\mathbb{E}_{p}\left[\int_{1}^{\nu_{m}} \psi_{a, b}(u)\left|\rho_{U_{k, m-1}(\mathbf{X})}(u)-\rho_{U_{k \infty}(\mathbf{X})}(u)\right| \mathrm{d} u\right], \quad \text { and } \\
& I_{\mathrm{out}, 2} \triangleq \mathbb{E}_{p}\left[I_{\mathrm{out}, 2}(\mathbf{X})\right]=\mathbb{E}_{p}\left[\int_{\nu_{m}}^{\infty} \psi_{a, b}(u)\left(\rho_{U_{k, m-1}(\mathbf{X})}(u)+\rho_{U_{k \infty}(\mathbf{X})}(u)\right) \mathrm{d} u\right]
\end{aligned}
$$

- The inner bias terms $I_{\mathrm{in}, 1}$ and $I_{\mathrm{in}, 2}$ can be controlled under the conditions $\left(\mathrm{U}_{p}\right)$, $\left(\mathrm{S}_{p}\right)$, and $\left(\mathrm{B}_{p}\right)$
- The outer bias terms $I_{\text {out }, 1}$ and $I_{\mathrm{out}, 2}$ can be bounded under the conditions $\left(\mathrm{U}_{p}\right)$, $\left(\mathrm{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right)$, and $\left(\mathrm{L} 3_{p}\right)$
- After putting the bounds together, a proper choice of the break points $\left(\tau_{m}, \nu_{m}\right)$ concludes the proof

Technical Lemmas for the Proof

- The following lemma establishes a rate of convergence of a Poisson binomial random variable $B_{m, Q / m} \sim \operatorname{Binom}(m, Q / m)$ to a Poisson random variable $P_{Q} \sim \operatorname{Poisson}(Q)$ in distribution

Lemma 3.17 (Generalization of [Gao et al., 2018, Lemma 5])

For any $Q, k=o(\sqrt{m})$ as $m \rightarrow \infty$, there exists a constant $C_{0}>0$ such that for m sufficiently large

$$
\left|\operatorname{Pr}\left\{B_{m, \frac{Q}{m}}=k\right\}-\operatorname{Pr}\left\{P_{Q}=k\right\}\right| \leq C_{0} \frac{Q^{k} e^{-Q}}{k!} \frac{\left(k^{2}+Q^{2}\right)}{m}
$$

Technical Lemmas for the Proof (Cont'd)

Lemma 3.18 (Generalization of [Gao et al., 2018, Lemma 4])

If a density p is σ_{p}-Hölder continuous with constant $L>0$ over $\mathbb{B}(\mathbf{x}, R)$ for $\mathbf{x} \in \mathbb{R}^{d}$ and some $\sigma_{p} \in[0,2]$, we have for any $0<r<R$,

$$
\begin{aligned}
\left|\frac{\mathrm{P}(\mathbb{B}(\mathbf{x}, r))}{\operatorname{Vol}(\mathbb{B}(\mathbf{x}, r))}-p(\mathbf{x})\right| & \leq \frac{d}{\sigma_{p}+d} L r^{\sigma_{p}}, \\
\left|\frac{\mathrm{dP}(\mathbb{B}(\mathbf{x}, r))}{\mathrm{dVol}(\mathbb{B}(\mathbf{x}, r))}-p(\mathbf{x})\right| & \leq L r^{\sigma_{p}} .
\end{aligned}
$$

- The convergence speed of $U_{k m}(\mathbf{x}) \xrightarrow{d} U_{k \infty}(\mathbf{x})$ can be quantified in terms of a gap between the densities using this lemma and the order of smoothness σ_{p} of p
- However, $O\left(r^{\sigma_{p}}\right)$ in Lemma 3.18 cannot be improved further beyond $O\left(r^{2}\right)$ [Han et al., 2020]
- In general, nonnegative kernel-based methods cannot exploit $\sigma_{p}>2$

On the Proof of Theorem 3.16 (Bias Rate)

Remark 3.3

- The key step in this analysis is the decomposition in (15), which is based on the construction of the estimator from its asymptotic unbiasedness
- By considering only the polynomial tail behavior of each estimator function and using (15), our analysis can deal with a general functional in a simple, unified manner
- The rest of the bias analysis, that is, bounding the four bias terms, closely follows and naturally extends that of [Gao et al., 2018] for a truncated version of the Kozachenko-Leonenko estimator of differential entropy

MSE Rate

Corollary 3.19

Under the same assumptions in Theorem 3.16, then the estimator (5) with fixed $k>-2 a$ satisfies

$$
\begin{equation*}
\mathbb{E}\left[\left(\hat{T}_{f}^{(k)}-T_{f}(p)\right)^{2}\right]=\tilde{O}\left(m^{-2 \lambda\left(\sigma_{p}, a, k\right)}+m^{-1}\right) \tag{16}
\end{equation*}
$$

Remark 3.4

- For $d \geq 2$, the bias bound always dominates the variance bound so that the MSE is bounded as $\tilde{O}\left(m^{-2 \lambda}\right)$
- For $d=1$, the variance bound may dominate the bias bound, depending on σ_{p} and a

Examples

Example 3.20 (Differential entropy; Example 3.1 contd.)

- Recall from Example 3.1 that $\left|\phi_{k}(u)\right| \lesssim \psi_{-\epsilon, \epsilon}(u)$ for any arbitrarily small $\epsilon>0$. Suppose that p satisfies the conditions $\left(\mathrm{U}_{p}\right),\left(\mathrm{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right),\left(\mathrm{L} 3_{p}\right),\left(\mathrm{S}_{p}\right)$, and $\left(\mathrm{B}_{p}\right)$, in Theorem 3.16 with some $\sigma_{p} \in(0,2]$
- Then we have the bias exponent $\lambda=\sigma_{p} / d$ as in the third case of (12) and the variance exponent of 1 from (9)
- Consequently, by Corollary 3.19 the MSE of our estimator is bounded as $\tilde{O}\left(m^{-2\left(\sigma_{p} \wedge 1\right) / d}+m^{-1}\right)$. This result recovers the same MSE rate of a truncated Kozachenko-Leonenko estimator in [Gao et al., 2018] for $\sigma_{p}=2$
- We remark that Gao et al. [2018] reported a lower bound $\Omega\left(m^{-\frac{16}{d+8}}+m^{-1}\right)$ for estimating differential entropy under $\sigma=2$, and indeed the convergence rate is not minimax optimal!

Examples

Example 3.21 (α-entropy; Example 3.2 contd.)

- Recall from Example 3.2 that $\left|\phi_{k}(u)\right| \lesssim \psi_{1-\alpha, 1-\alpha}(u)$ for any $k \in \mathbb{N}$ such that $k>\alpha-1$
- Hence, for densities satisfying the conditions $\left(\mathrm{U}_{p}\right),\left(\mathrm{L} 1_{p}\right),\left(\mathrm{L} 2_{p}\right),\left(\mathrm{L} 3_{p}\right),\left(\mathrm{S}_{p}\right)$, and $\left(\mathrm{B}_{p}\right)$, the MSE of our estimator (5) with fixed $k>2(\alpha-1)$ is bounded as (16) with the bias rate exponent

$$
\lambda\left(\sigma_{p}, a, k\right)= \begin{cases}\frac{1}{d}\left(\sigma_{p} \wedge 1\right) & \text { if } \alpha<2 \tag{17}\\ \frac{1}{d}\left(\sigma_{p} \wedge \frac{k+1-\alpha}{k-1}\right) & \text { if } 2 \leq \alpha<2+\frac{\sigma_{p}}{d} \\ \frac{1}{d}\left(\sigma_{p} \wedge 1\right)\left(\frac{k+1-\alpha}{k-1}\right) & \text { if } \alpha \geq 2+\frac{\sigma_{p}}{d}\end{cases}
$$

- Note that similar convergence rates can be established for the logarithmic α-entropy and the exponential (α, β)-entropy

On the Rate Suboptimality

Remark 3.5

- An estimator of a given density functional is said to be minimax optimal if its MSE for the worst-case density is no larger than that of any other estimator
- In general, the established convergence rates in MSE in this paper are not minimax optimal [Singh and Póczos, 2014a,b, Krishnamurthy et al., 2014, Kandasamy et al., 2015] due to the suboptimal bias rates; see, e.g., Example 3.20
- For the special case of differential entropy, we note that Jiao et al. [2018] established an asymptotic minimax optimality of the Kozachenko-Leonenko estimator for smooth densities of order $\sigma \in(0,2]$ over a torus (no boundary condition), matching the lower bound of [Han et al., 2020] up to a polylogarithmic factor

More Technical Results

- Convergence rates for smooth densities of unbounded support
- Functionals of two densities
- Adaptive choices of k : Using $k=\Theta\left((\ln m)^{1.01}\right)$ may improve the rates

Concluding Remarks

- The established convergence rates are not minimax optimal; see Remark 3.5
Q. Can we extend the analysis of [Jiao et al., 2018] and establish a minimax optimality of the estimator under the torus condition?
- As noted earlier, the proposed estimators cannot adapt to a higher order of smoothness $\sigma>2$, due to the inherent limitation of positive-valued kernels
- One possible solution to both problems is the ensemble approach [Sricharan et al., 2013, Moon and Hero, 2014] that takes a weighted average of multiple estimators based on the asymptotic bias expansion of each density functional estimator
Q. Is an ensemble version of the estimators minimax-rate optimal?

See Berrett and Samworth [2019] for a weighted version of the proposed divergence functional estimator from this paper with local minimax optimality

References I

Thomas B Berrett and Richard J Samworth. Efficient two-sample functional estimation and the super-oracle phenomenon. arXiv preprint arXiv:1904.09347, 2019.
Gérard Biau and Luc Devroye. Lectures on the Nearest Neighbor Method. Springer International Publishing, 2015.
Vivek S Borkar. Probability theory: an advanced course. Springer Science \& Business Media, 1995.
Alexander Bulinski and Denis Dimitrov. Statistical estimation of the shannon entropy. Acta Mathematica Sinica, English Series, 35(1):17-46, 2019a.
Alexander Bulinski and Denis Dimitrov. Statistical estimation of the Kullback-Leibler divergence. arXiv preprint arXiv:1907.00196, 2019b.
B Efron and C Stein. The Jackknife Estimate of Variance. Ann. Statist., 9(3):586-596, 1981.

Gerald B Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley \& Sons, 2013.

References II

Weihao Gao, Sewoong Oh, and Pramod Viswanath. Demystifying fixed k-nearest neighbor information estimators. IEEE Trans. Inf. Theory, 64(8):5629-5661, August 2018.
M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L.Novi Inverardi. A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Nonparametr. Statist., 17(3):277-297, 2005.

Yanjun Han, Jiantao Jiao, Tsachy Weissman, and Yihong Wu. Optimal rates of entropy estimation over Lipschitz balls. Ann. Statist., 48(6):3228-3250, 2020.
J Harvda and F Charvat. Quantification method of classification processes. concept of structural α-entropy. Kybernetika (Prague), 3:30-35, 1967.
Jiantao Jiao, Weihao Gao, and Yanjun Han. The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal. In Adv. Neural Inf. Proc. Syst., volume 31, December 2018.

References III

Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry A Wasserman, and James M Robins. Nonparametric von Mises estimators for entropies, divergences and mutual informations. In Adv. Neural Inf. Proc. Syst., volume 28, pages 397-405, 2015.

Granino Arthur Korn and Theresa M Korn. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Courier Corporation, 2000.
L F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random vector. Probl. Inf. Transm., 23(2):9-16, 1987. (Russian).
Akshay Krishnamurthy, Kirthevasan Kandasamy, Barnabás Póczos, and Larry Wasserman. Nonparametric estimation of Rényi divergence and friends. In Proc. Int. Conf. Mach. Learn., pages 919-927, 2014.

References IV

Nikolai Leonenko, Luc Pronzato, and Vippal Savani. A class of Rényi information estimators for multidimensional densities. Ann. Statist., 36(5):2153-2182, October 2008. Corrected in Leonenko, N. and Prozanto, L. (2010). Correction: A class of Rényi information estimators for multidimensional densities. Ann. Statist. 38 3837-3838.
Nikolai N Leonenko and Luc Pronzato. Correction: A class of Rényi information estimators for multidimensional densities. Ann. Statist., 38(6):3837-3838, 2010.
Kevin R Moon and Alfred O Hero. Ensemble estimation of multivariate f-divergence. In Proc. IEEE Int. Symp. Inf. Theory, pages 356-360. IEEE, 2014.
Barnabás Póczos and Jeff G Schneider. On the Estimation of alpha-Divergences. Int. Conf. Artif. Int. Statist., pages 609-617, 2011.
Barnabás Póczos, Liang Xiong, Dougal J Sutherland, and Jeff Schneider. Nonparametric kernel estimators for image classification. In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pages 2989-2996. IEEE, June 2012.
Alfréd Rényi. On measures of entropy and information. In Proc. 4th Berkeley Sympos. Math. Statist. Probab., volume 1, pages 547-761. Univ. California Press, Berkeley, 1961.

References V

Walter Rudin. Real and Complex Analysis. McGraw-Hill Education, 1987.
Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Nearest neighbor estimates of entropy. Am. J. Math. Manag. Sci., 23(3-4): 301-321, 2003.
Shashank Singh and Barnabás Póczos. Generalized exponential concentration inequality for rényi divergence estimation. In Proc. Int. Conf. Mach. Learn., pages 333-341. PMLR, 2014a.
Shashank Singh and Barnabás Póczos. Exponential concentration of a density functional estimator. In Adv. Neural Inf. Proc. Syst., volume 27, pages 3032-3040, 2014b.
Shashank Singh and Barnabás Póczos. Finite-sample analysis of fixed-k nearest neighbor density functional estimators. In Adv. Neural Inf. Proc. Syst., volume 29, pages 1217-1225. Curran Associates, Inc., 2016.
Kumar Sricharan, Dennis Wei, and Alfred O Hero. Ensemble estimators for multivariate entropy estimation. IEEE Trans. Inf. Theory, 59(7):4374-4388, 2013.

References VI

J. Michael Steele. An Efron-Stein Inequality for Nonsymmetric Statistics. Ann. Statist., 14(2):753-758, June 1986.
Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. J. of Statist. Phys., 52(1-2):479-487, 1988.
A. B. Tsybakov and E. C. van der Meulen. Root- n Consistent Estimators of Entropy for Densities with Unbounded Support. Scand. Statist. Theory Appl., 1996.
Qing Wang, Sanjeev R Kulkarni, and Sergio Verdú. Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Inf. Theory, 55 (5):2392-2405, 2009.

