Time-Uniform Confidence Sequences from Universal Gambling

Jongha (Jon) Ryu
MIT
January 6, 2023
Joint work with Alankrita Bhatt (Caltech)

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$
- Problem: Estimate μ based on $Y^{t}:=\left(Y_{1}, \ldots, Y_{t}\right)$

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$
- Problem: Estimate μ based on $Y^{t}:=\left(Y_{1}, \ldots, Y_{t}\right)$
- An (easy) answer: the empirical mean $\hat{\mu}_{t}:=\frac{1}{t} \sum_{i=1}^{t} Y_{i}$

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$
- Problem: Estimate μ based on $Y^{t}:=\left(Y_{1}, \ldots, Y_{t}\right)$
- An (easy) answer: the empirical mean $\hat{\mu}_{t}:=\frac{1}{t} \sum_{i=1}^{t} Y_{i}$

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$
- Problem: Estimate μ based on $Y^{t}:=\left(Y_{1}, \ldots, Y_{t}\right)$
- An (easy) answer: the empirical mean $\hat{\mu}_{t}:=\frac{1}{t} \sum_{i=1}^{t} Y_{i}$

- But how accurate is it?

Parameter Estimation

- Let $Y_{1}, Y_{2}, \ldots \sim$ i.i.d. $p(x)$ over $[0,1]$
- Suppose $\mathrm{E}_{p(y)}[Y]=\mu$
- Problem: Estimate μ based on $Y^{t}:=\left(Y_{1}, \ldots, Y_{t}\right)$
- An (easy) answer: the empirical mean $\hat{\mu}_{t}:=\frac{1}{t} \sum_{i=1}^{t} Y_{i}$

- But how accurate is it?
- For reliable inference, we need to quantify confidence

Parameter Estimation with Confidence

- We can use concentration inequalities!

Parameter Estimation with Confidence

- We can use concentration inequalities!
- If we knew $\operatorname{Var}(Y)$ a priori, Chebyshev gives

$$
\mathrm{P}\left(\left|\mu-\hat{\mu}_{t}\right|>\epsilon\right) \leq \frac{\operatorname{Var}(Y)}{t \epsilon^{2}}
$$

which is equivalent to

$$
\mu \in\left(\hat{\mu}_{t}-\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right) \text { with prob. } \geq 1-\delta
$$

Parameter Estimation with Confidence

- We can use concentration inequalities!
- If we knew $\operatorname{Var}(Y)$ a priori, Chebyshev gives

$$
\mathrm{P}\left(\left|\mu-\hat{\mu}_{t}\right|>\epsilon\right) \leq \frac{\operatorname{Var}(Y)}{t \epsilon^{2}}
$$

which is equivalent to

$$
\mu \in\left(\hat{\mu}_{t}-\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right) \text { with prob. } \geq 1-\delta
$$

Parameter Estimation with Confidence

- We can use concentration inequalities!
- Since $\left(Y_{t}\right)_{t=1}^{\infty}$ is bounded, Hoeffding gives

$$
\mathrm{P}\left(\left|\mu-\hat{\mu}_{t}\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} t}
$$

which is equivalent to

$$
\mu \in\left(\hat{\mu}_{t}-\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}\right) \text { with prob. } \geq 1-\delta
$$

Parameter Estimation with Confidence

- We can use concentration inequalities!
- Since $\left(Y_{t}\right)_{t=1}^{\infty}$ is bounded, Hoeffding gives

$$
\mathrm{P}\left(\left|\mu-\hat{\mu}_{t}\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} t}
$$

which is equivalent to

$$
\mu \in\left(\hat{\mu}_{t}-\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}\right) \text { with prob. } \geq 1-\delta
$$

Confidence Sets

- A set $C_{t}(\delta)$ is a confidence set for μ at level $1-\delta$, if $C_{t}(\delta)$ is a function of Y^{t} and

$$
\mathrm{P}\left(\mu \in C_{t}(\delta)\right) \geq 1-\delta
$$

Confidence Sets

- A set $C_{t}(\delta)$ is a confidence set for μ at level $1-\delta$, if $C_{t}(\delta)$ is a function of Y^{t} and

$$
\mathrm{P}\left(\mu \in C_{t}(\delta)\right) \geq 1-\delta
$$

- For example,
- Chebyshev: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right)$
- Hoeffding: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}\right)$

Confidence Sets

- A set $C_{t}(\delta)$ is a confidence set for μ at level $1-\delta$, if $C_{t}(\delta)$ is a function of Y^{t} and

$$
\mathrm{P}\left(\mu \in C_{t}(\delta)\right) \geq 1-\delta
$$

- For example,
- Chebyshev: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right)$
- Hoeffding: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}\right)$
- Now, suppose we wish to decide to keep or stop sampling Y_{t} to estimate μ given confidence level on the fly (sequentially)

Confidence Sets

- A set $C_{t}(\delta)$ is a confidence set for μ at level $1-\delta$, if $C_{t}(\delta)$ is a function of Y^{t} and

$$
\mathrm{P}\left(\mu \in C_{t}(\delta)\right) \geq 1-\delta
$$

- For example,
- Chebyshev: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right)$
- Hoeffding: $C_{t}(\delta)=\left(\hat{\mu}_{t}-\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}, \hat{\mu}_{t}+\sqrt{\frac{1}{2 t} \log \frac{2}{\delta}}\right)$
- Now, suppose we wish to decide to keep or stop sampling Y_{t} to estimate μ given confidence level on the fly (sequentially)
- For such online data processing, we need to construct a sequence of confidence intervals that is valid at any time

Time-Uniform Confidence Sets

- Time-uniform confidence sets (a.k.a. confidence sequence)

$$
\mathrm{P}\left(\mu \in C_{t}, \forall t \geq 1\right) \geq 1-\delta
$$

Time-Uniform Confidence Sets

- Time-uniform confidence sets (a.k.a. confidence sequence)

$$
\mathrm{P}\left(\mu \in C_{t}, \forall t \geq 1\right) \geq 1-\delta
$$

- Contrast with the standard definition of confidence intervals:

$$
\mathrm{P}\left(\mu \in C_{t}\right) \geq 1-\delta, \forall t \geq 1
$$

Time-Uniform Confidence Sets

- Time-uniform confidence sets (a.k.a. confidence sequence)

$$
\mathrm{P}\left(\mu \in C_{t}, \forall t \geq 1\right) \geq 1-\delta
$$

- Contrast with the standard definition of confidence intervals:

$$
\mathrm{P}\left(\mu \in C_{t}\right) \geq 1-\delta, \forall t \geq 1
$$

- Originally studied by Darling and Robbins (1967); Lai (1976), and recently resurrected by some statisticians (Ramdas et al., 2020; Waudby-Smith and Ramdas, 2020a,b; Howard et al., 2021) and computer scientists (Jun and Orabona, 2019; Orabona and Jun, 2021)

Recall: Martingales

- A canonical probabilistic model for gambling

Recall: Martingales

- A canonical probabilistic model for gambling
- A random process $\left(W_{t}\right)_{t=0}^{\infty}$ is said to be

Recall: Martingales

- A canonical probabilistic model for gambling
- A random process $\left(W_{t}\right)_{t=0}^{\infty}$ is said to be
- martingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right]=W_{t-1}
$$

Recall: Martingales

- A canonical probabilistic model for gambling
- A random process $\left(W_{t}\right)_{t=0}^{\infty}$ is said to be
- martingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right]=W_{t-1}
$$

i.e., given history, the expected wealth does not change;

Recall: Martingales

- A canonical probabilistic model for gambling
- A random process $\left(W_{t}\right)_{t=0}^{\infty}$ is said to be
- martingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right]=W_{t-1}
$$

i.e., given history, the expected wealth does not change;

- supermartingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right] \leq W_{t-1}
$$

Recall: Martingales

- A canonical probabilistic model for gambling
- A random process $\left(W_{t}\right)_{t=0}^{\infty}$ is said to be
- martingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right]=W_{t-1}
$$

i.e., given history, the expected wealth does not change;

- supermartingale if for any $t \geq 1$,

$$
\mathrm{E}\left[W_{t} \mid W_{1}, \ldots, W_{t-1}\right] \leq W_{t-1}
$$

i.e., given history, the expected wealth always does not increase

A Tool from Martingale Theory

- Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

A Tool from Martingale Theory

- Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality
For a nonnegative random variable W,

$$
\mathrm{P}\left(\frac{W}{\mathrm{E}[W]} \geq \frac{1}{\delta}\right) \leq \delta
$$

A Tool from Martingale Theory

- Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$
\mathrm{P}\left(\frac{W}{\mathrm{E}[W]} \geq \frac{1}{\delta}\right) \leq \delta
$$

- In martingale theory, there is a time-uniform counterpart:

A Tool from Martingale Theory

- Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$
\mathrm{P}\left(\frac{W}{\mathrm{E}[W]} \geq \frac{1}{\delta}\right) \leq \delta
$$

- In martingale theory, there is a time-uniform counterpart:

Ville's inequality (Ville, 1939)

For a nonnegative supermartingale sequence $\left(W_{t}\right)_{t=0}^{\infty}$ with $W_{0}>0$,

$$
\mathrm{P}\left\{\sup _{t \geq 1} \frac{W_{t}}{W_{0}} \geq \frac{1}{\delta}\right\} \leq \delta
$$

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- Wait, what is gambling?

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- Wait, what is gambling?
- As a slight detour, let's review canonical gambling problems and some universal gambling strategies

Universal Gambling

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$
- At each round t, a gambler distributes its wealth $\$ \mathrm{~W}_{t-1}$ according to $\left(q_{t}, 1-q_{t}\right)$

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$
- At each round t, a gambler distributes its wealth $\$ \mathrm{~W}_{t-1}$ according to $\left(q_{t}, 1-q_{t}\right)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$
- At each round t, a gambler distributes its wealth $\$ \mathrm{~W}_{t-1}$ according to $\left(q_{t}, 1-q_{t}\right)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_{t}:=q\left(1 \mid y^{t-1}\right) \in[0,1]$

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$
- At each round t, a gambler distributes its wealth $\$ W_{t-1}$ according to $\left(q_{t}, 1-q_{t}\right)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_{t}:=q\left(1 \mid y^{t-1}\right) \in[0,1]$
- The recursive equation:

$$
\mathbf{W}_{t}=\mathbf{W}_{t-1} 2 q_{t}^{\mathbb{1}\left\{y_{t}=1\right\}}\left(1-q_{t}\right)^{\mathbb{1}\left\{y_{t}=0\right\}}=\mathbf{W}_{t-1} 2 q\left(y_{t} \mid y^{t-1}\right)
$$

Coin Betting

- Coin tosses $y_{1}, y_{2}, \ldots \in\{0,1\}$
- At each round t, a gambler distributes its wealth $\$ \mathrm{~W}_{t-1}$ according to $\left(q_{t}, 1-q_{t}\right)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_{t}:=q\left(1 \mid y^{t-1}\right) \in[0,1]$
- The recursive equation:

$$
\mathbf{W}_{t}=\mathbf{W}_{t-1} 2 q_{t}^{\mathbb{1}\left\{y_{t}=1\right\}}\left(1-q_{t}\right)^{\mathbb{1}\left\{y_{t}=0\right\}}=\mathbf{W}_{t-1} 2 q\left(y_{t} \mid y^{t-1}\right)
$$

- Cumulative wealth: starting with $\$ \mathrm{~W}_{0}$,

$$
\mathbf{W}_{T}=\mathbf{W}_{0} \prod_{t=1}^{T} 2 q\left(y_{t} \mid y^{t-1}\right)=\mathbf{W}_{0} 2^{T} q\left(y^{T}\right)
$$

where $q\left(y^{T}\right):=\prod_{t=1}^{T} q\left(y_{t} \mid y^{t-1}\right)$

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Wealth ratio

$$
\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Regret $=\log$ (wealth ratio)

$$
\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Regret w.r.t. the best reference strategy

$$
\max _{p \in \mathcal{P}} \log \frac{\mathrm{~W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$
\max _{y^{T}} \max _{p \in \mathcal{P}} \log \frac{\mathbf{W}^{p}\left(y^{T}\right)}{\mathbf{W}^{q}\left(y^{T}\right)}
$$

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$
\max _{y^{T}} \max _{p \in \mathcal{P}} \log \frac{\mathrm{~W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

If $o(T)$, the gambler q is said to be universal w.r.t. \mathcal{P}

Universality and Minimax Optimality

- Let $\mathrm{W}_{t}:=\mathrm{W}^{q}\left(y^{t}\right)$ for a betting strategy $\left(q\left(\cdot \mid y^{t-1}\right)\right)_{t=1}^{\infty}$
- For some $\mathcal{P}=\{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$
\max _{y^{T}} \max _{p \in \mathcal{P}} \log \frac{\mathrm{~W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

If $o(T)$, the gambler q is said to be universal w.r.t. \mathcal{P}

- The best strategy is called minimax optimal

$$
\min _{q} \max _{p \in \mathcal{P}} \max _{y^{T}} \log \frac{\mathrm{~W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}
$$

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss
- At each round t, a learner assigns probability $q\left(\cdot \mid y^{t-1}\right)$ over $\{0,1\}$

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss
- At each round t, a learner assigns probability $q\left(\cdot \mid y^{t-1}\right)$ over $\{0,1\}$
- After observing $y_{t} \in\{0,1\}$, suffer loss $\log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}$

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss
- At each round t, a learner assigns probability $q\left(\cdot \mid y^{t-1}\right)$ over $\{0,1\}$
- After observing $y_{t} \in\{0,1\}$, suffer loss $\log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}$
- The cumulative regret w.r.t. a reference probability $p\left(y^{t}\right)$ is

$$
\sum_{t=1}^{T} \log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}-\sum_{t=1}^{T} \log \frac{1}{p\left(y_{t} \mid y^{t-1}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}
$$

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss
- At each round t, a learner assigns probability $q\left(\cdot \mid y^{t-1}\right)$ over $\{0,1\}$
- After observing $y_{t} \in\{0,1\}$, suffer loss $\log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}$
- The cumulative regret w.r.t. a reference probability $p\left(y^{t}\right)$ is

$$
\sum_{t=1}^{T} \log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}-\sum_{t=1}^{T} \log \frac{1}{p\left(y_{t} \mid y^{t-1}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}
$$

\therefore coin betting \equiv binary prediction under log loss (\equiv lossless binary compression)

Coin Betting \equiv Probability Assignment

- Note: $\frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\frac{\mathrm{W}_{0} 2^{T} p\left(y^{T}\right)}{\mathrm{W}_{0} 2^{T} q\left(y^{T}\right)}=\frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$ by definition
- Binary prediction under log loss
- At each round t, a learner assigns probability $q\left(\cdot \mid y^{t-1}\right)$ over $\{0,1\}$
- After observing $y_{t} \in\{0,1\}$, suffer loss $\log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}$
- The cumulative regret w.r.t. a reference probability $p\left(y^{t}\right)$ is

$$
\sum_{t=1}^{T} \log \frac{1}{q\left(y_{t} \mid y^{t-1}\right)}-\sum_{t=1}^{T} \log \frac{1}{p\left(y_{t} \mid y^{t-1}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}
$$

\therefore coin betting \equiv binary prediction under log loss (\equiv lossless binary compression)
\therefore universal compression \rightarrow universal betting!

Example: Constant Bettors

- $\mathcal{P}=\left\{p_{\theta}(\cdot): \theta \in[0,1]\right\}$, where $p_{\theta}\left(1 \mid y^{t-1}\right)=\theta$

Example: Constant Bettors

- $\mathcal{P}=\left\{p_{\theta}(\cdot): \theta \in[0,1]\right\}$, where $p_{\theta}\left(1 \mid y^{t-1}\right)=\theta$
- Cumulative wealth:

$$
\mathrm{W}^{\theta}\left(y^{T}\right):=\mathrm{W}_{0} 2^{T} p_{\theta}\left(y^{T}\right),
$$

where $p_{\theta}\left(y^{T}\right)$ is the "probability" under $y^{T} \sim$ i.i.d. $\operatorname{Bern}(\theta)$

Example: Constant Bettors

- $\mathcal{P}=\left\{p_{\theta}(\cdot): \theta \in[0,1]\right\}$, where $p_{\theta}\left(1 \mid y^{t-1}\right)=\theta$
- Cumulative wealth:

$$
\mathrm{W}^{\theta}\left(y^{T}\right):=\mathrm{W}_{0} 2^{T} p_{\theta}\left(y^{T}\right)
$$

where $p_{\theta}\left(y^{T}\right)$ is the "probability" under $y^{T} \sim$ i.i.d. $\operatorname{Bern}(\theta)$

- Fact: $p_{\theta^{*}}$ is optimal if $y^{T} \sim$ i.i.d. $\operatorname{Bern}\left(\theta^{*}\right)$ (a.k.a. Kelly betting)

Example: Constant Bettors

- $\mathcal{P}=\left\{p_{\theta}(\cdot): \theta \in[0,1]\right\}$, where $p_{\theta}\left(1 \mid y^{t-1}\right)=\theta$
- Cumulative wealth:

$$
\mathrm{W}^{\theta}\left(y^{T}\right):=\mathrm{W}_{0} 2^{T} p_{\theta}\left(y^{T}\right)
$$

where $p_{\theta}\left(y^{T}\right)$ is the "probability" under $y^{T} \sim$ i.i.d. $\operatorname{Bern}(\theta)$

- Fact: $p_{\theta^{*}}$ is optimal if $y^{T} \sim$ i.i.d. $\operatorname{Bern}\left(\theta^{*}\right)$ (a.k.a. Kelly betting)
- Krichevsky-Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

$$
q_{\mathrm{KT}}\left(1 \mid y^{t-1}\right):=\frac{1}{t}\left(\sum_{i=1}^{t-1} y_{i}+\frac{1}{2}\right)
$$

Example: Constant Bettors

- $\mathcal{P}=\left\{p_{\theta}(\cdot): \theta \in[0,1]\right\}$, where $p_{\theta}\left(1 \mid y^{t-1}\right)=\theta$
- Cumulative wealth:

$$
\mathrm{W}^{\theta}\left(y^{T}\right):=\mathrm{W}_{0} 2^{T} p_{\theta}\left(y^{T}\right)
$$

where $p_{\theta}\left(y^{T}\right)$ is the "probability" under $y^{T} \sim$ i.i.d. $\operatorname{Bern}(\theta)$

- Fact: $p_{\theta^{*}}$ is optimal if $y^{T} \sim$ i.i.d. $\operatorname{Bern}\left(\theta^{*}\right)$ (a.k.a. Kelly betting)
- Krichevsky-Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

$$
q_{\mathrm{KT}}\left(1 \mid y^{t-1}\right):=\frac{1}{t}\left(\sum_{i=1}^{t-1} y_{i}+\frac{1}{2}\right)
$$

- Asymptotically minimax optimal (Xie and Barron, 2000)

$$
\max _{\theta \in[0,1]} \max _{y^{T}} \log \frac{p_{\theta}\left(y^{T}\right)}{q_{\mathrm{KT}}\left(y^{T}\right)}=\frac{1}{2} \log T+\frac{1}{2} \log \frac{\pi}{2}+o(1)
$$

Mixture Probability

- The KT probability $q_{\mathrm{KT}}\left(\cdot \mid y^{t-1}\right)$ is induced by a mixture probability, i.e.,

$$
q_{\mathrm{KT}}\left(y^{T}\right) \equiv \int_{0}^{1} p_{\theta}\left(y^{T}\right) \mathrm{d} \pi(\theta)
$$

for $\pi(\theta)=\operatorname{Beta}\left(\theta \left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right)$

Mixture Probability

- The KT probability $q_{\mathrm{KT}}\left(\cdot \mid y^{t-1}\right)$ is induced by a mixture probability, i.e.,

$$
q_{\mathrm{KT}}\left(y^{T}\right) \equiv \int_{0}^{1} p_{\theta}\left(y^{T}\right) \mathrm{d} \pi(\theta)
$$

for $\pi(\theta)=\operatorname{Beta}\left(\theta \left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right)$

- In other words, KT strategy attains the mixture wealth,

$$
\mathrm{W}^{\mathrm{KT}}\left(y^{T}\right)=\mathrm{W}_{0} 2^{T} q_{\mathrm{KT}}\left(y^{T}\right)=\int_{0}^{1} \mathrm{~W}^{\theta}\left(y^{T}\right) \mathrm{d} \pi(\theta)
$$

Mixture Probability

- The KT probability $q_{\mathrm{KT}}\left(\cdot \mid y^{t-1}\right)$ is induced by a mixture probability, i.e.,

$$
q_{\mathrm{KT}}\left(y^{T}\right) \equiv \int_{0}^{1} p_{\theta}\left(y^{T}\right) \mathrm{d} \pi(\theta)
$$

for $\pi(\theta)=\operatorname{Beta}\left(\theta \left\lvert\, \frac{1}{2}\right., \frac{1}{2}\right)$

- In other words, KT strategy attains the mixture wealth,

$$
\mathrm{W}^{\mathrm{KT}}\left(y^{T}\right)=\mathrm{W}_{0} 2^{T} q_{\mathrm{KT}}\left(y^{T}\right)=\int_{0}^{1} \mathrm{~W}^{\theta}\left(y^{T}\right) \mathrm{d} \pi(\theta)
$$

- So, mixture is nice!

Horse Race

- Horses: $1,2, \ldots, m$

[^0]
Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$

[^1]
Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

Image credit: Created with Template.net Free Templates

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)
$$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)
$$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

- Regret: $\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

- Regret: $\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

- Regret: $\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}$

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

- Regret: $\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)} \Rightarrow$ equivalent to m-ary prediction under log loss!

Horse Race

- Horses: $1,2, \ldots, m$
- Odds: $o_{1}, o_{2}, \ldots, o_{m}$
- Outcome: $y_{t} \in[m]$

- Bets: $\left(q\left(1 \mid y^{t-1}\right), \ldots, q\left(m \mid y^{t-1}\right)\right) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)$
- Cumulative wealth:

$$
\mathrm{W}^{q}\left(y^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T} o_{y_{t}} q\left(y_{t} \mid y^{t-1}\right)=\mathrm{W}_{0} \prod_{z \in[m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\left\{y_{t}=z\right\}} q\left(y^{T}\right)
$$

- Regret: $\log \frac{\mathrm{W}^{p}\left(y^{T}\right)}{\mathrm{W}^{q}\left(y^{T}\right)}=\log \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)} \Rightarrow$ equivalent to m-ary prediction under log loss!
- KT strategy: $q_{\mathrm{KT}}\left(y^{T}\right):=\int_{\Delta_{m-1}} p_{\boldsymbol{\theta}}\left(y^{T}\right) \mathrm{d} \pi(\boldsymbol{\theta})$, where $\pi(\boldsymbol{\theta})=\operatorname{Dir}\left(\boldsymbol{\theta} \left\lvert\, \frac{1}{2}\right., \ldots, \frac{1}{2}\right)$

Image credit: Created with Template.net Free Templates

Stock Investment

- Stocks: $1,2, \ldots, m$

Selected asset performance since Jan 3 high for S\&P 500

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

Stock Investment

- Stocks: $1,2, \ldots, m$
- Price relatives (market vector):

$$
\begin{aligned}
\mathbf{x}_{t} & =\left(x_{t 1}, \ldots, x_{t m}\right) \in \mathcal{M} \subseteq \mathbb{R}_{\geq 0}^{m} \\
x_{t i} & :=\frac{(\text { end price of stock } i \text { on day } t)}{(\text { start price of stock } i \text { on day } t)}
\end{aligned}
$$

Selected asset performance since Jan 3 high for S\&P 500

Stock Investment

- Stocks: $1,2, \ldots, m$
- Price relatives (market vector):

$$
\begin{aligned}
\mathbf{x}_{t} & =\left(x_{t 1}, \ldots, x_{t m}\right) \in \mathcal{M} \subseteq \mathbb{R}_{\geq 0}^{m}, \\
x_{t i} & :=\frac{(\text { end price of stock } i \text { on day } t)}{(\text { start price of stock } i \text { on day } t)}
\end{aligned}
$$

- Portfolio: $\mathbf{b}\left(\mathbf{x}^{t-1}\right) \in \Delta_{m-1}$

Selected asset performance since Jan 3 high for S\&P 500

Note Colaas of Jone 13 moming trocing Sourcee Reiniaitiv

Stock Investment

- Stocks: $1,2, \ldots, m$
- Price relatives (market vector):

$$
\begin{aligned}
\mathbf{x}_{t} & =\left(x_{t 1}, \ldots, x_{t m}\right) \in \mathcal{M} \subseteq \mathbb{R}_{\geq 0}^{m}, \\
x_{t i} & :=\frac{(\text { end price of stock } i \text { on day } t)}{(\text { start price of stock } i \text { on day } t)}
\end{aligned}
$$

- Portfolio: $\mathbf{b}\left(\mathbf{x}^{t-1}\right) \in \Delta_{m-1}$

Selected asset performance since Jan 3 high for S\&P 500

Note Colaas of Jone 13 moming trocing
Source Reinitiv

- Cumulative wealth: starting with $\$ \mathrm{~W}_{0}$,

$$
\mathrm{W}\left(\mathrm{x}^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T}\left\langle\mathrm{~b}\left(\mathrm{x}^{t-1}\right), \mathrm{x}_{t}\right\rangle
$$

Special Cases

From Probability Assignment to Portfolio Selection

- By distributive law,

$$
\mathrm{W}\left(\mathbf{x}^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T}\left\langle\mathrm{~b}\left(\mathrm{x}^{t-1}\right), \mathrm{x}_{t}\right\rangle=\mathrm{W}_{0} \sum_{y^{T} \in[m]^{T}}\left(\prod_{t=1}^{T} b\left(y_{t} \mid \mathrm{x}^{t-1}\right)\right) \mathbf{x}^{T}\left(y^{T}\right)
$$

where $\mathbf{x}^{T}\left(y^{T}\right):=x_{1 y_{1}} \ldots x_{T y_{T}}=\left(\right.$ multiplicative gain of the extremal portfolio $\left.y^{T}\right)$

From Probability Assignment to Portfolio Selection

- By distributive law,

$$
\mathrm{W}\left(\mathbf{x}^{T}\right)=\mathrm{W}_{0} \prod_{t=1}^{T}\left\langle\mathrm{~b}\left(\mathrm{x}^{t-1}\right), \mathrm{x}_{t}\right\rangle=\mathrm{W}_{0} \sum_{y^{T} \in[m]^{T}}\left(\prod_{t=1}^{T} b\left(y_{t} \mid \mathrm{x}^{t-1}\right)\right) \mathbf{x}^{T}\left(y^{T}\right)
$$

where $\mathbf{x}^{T}\left(y^{T}\right):=x_{1 y_{1}} \ldots x_{T y_{T}}=\left(\right.$ multiplicative gain of the extremal portfolio $\left.y^{T}\right)$

- A probability induced portfolio: for a probability $q\left(y^{T}\right)$, define

$$
\mathrm{W}^{q}\left(\mathbf{x}^{T}\right):=\mathrm{W}_{0} \sum_{y^{T} \in[m]^{T}} q\left(y^{T}\right) \mathbf{x}^{T}\left(y^{T}\right),
$$

which is achieved by a causal bettor b^{q} defined to satisfy

$$
\mathbf{W}^{q}\left(\mathbf{x}^{t}\right)=\mathbf{W}^{q}\left(\mathbf{x}^{t-1}\right)\left\langle\mathbf{b}^{q}\left(\mathbf{x}^{t-1}\right), \mathbf{x}_{t}\right\rangle
$$

Portfolio Selection \equiv Probability Assignment

Theorem

$$
\sup _{p \in \mathcal{P}} \sup _{\mathbf{x}^{T}} \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{T}\right)}{\mathrm{W}^{q}\left(\mathbf{x}^{T}\right)}=\sup _{p \in \mathcal{P}} \sup _{y^{T}} \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}
$$

Portfolio Selection \equiv Probability Assignment

Theorem

$$
\sup _{p \in \mathcal{P}} \sup _{\mathbf{x}^{T}} \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{T}\right)}{\mathrm{W}^{q}\left(\mathbf{x}^{T}\right)}=\sup _{p \in \mathcal{P}} \sup _{y^{T}} \frac{p\left(y^{T}\right)}{q\left(y^{T}\right)}
$$

Proof

$$
\begin{aligned}
& \sup _{\mathbf{x}^{n}} \sup _{p \in \mathcal{P}} \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{n}\right)}{\mathrm{W}^{q}\left(\mathbf{x}^{n}\right)} \geq \sup _{y^{n} \in[m]^{n}} \sup _{p \in \mathcal{P}} \frac{\mathrm{~W}^{p}\left(\mathbf{e}_{y_{1}} \ldots \mathbf{e}_{y_{n}}\right)}{\mathrm{W}^{q}\left(\mathbf{e}_{y_{1}} \ldots \mathbf{e}_{y_{n}}\right)}=\sup _{y^{n} \in[m]^{n}} \sup _{p \in \mathcal{P}} \frac{p\left(y^{n}\right)}{q\left(y^{n}\right)} \\
& \sup _{\mathbf{x}^{n}} \sup _{p \in \mathcal{P}} \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{n}\right)}{\mathrm{W}^{q}\left(\mathbf{x}^{n}\right)}=\sup _{\mathbf{x}^{n}} \sup _{p \in \mathcal{P}} \frac{\sum_{y^{n}} p\left(y^{n}\right) \mathbf{x}\left(y^{n}\right)}{\sum_{y^{n}} q\left(y^{n}\right) \mathbf{x}\left(y^{n}\right)} \leq \sup _{p \in \mathcal{P}} \sup _{y^{n}} \frac{p\left(y^{n}\right)}{q\left(y^{n}\right)}
\end{aligned}
$$

Lemma * (Cover, 2006, Lemma 16.7.1)

For $a_{i}, b_{i} \geq 0$, we have $\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}} \leq \max _{j \in[n] \frac{a}{b_{j}}}^{b_{j}}$, where $\frac{0}{0}:=0$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$
- Example: Consider a market vector sequence $\left(1, \frac{1}{2}\right),(1,2),\left(1, \frac{1}{2}\right), \ldots$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$
- Example: Consider a market vector sequence $\left(1, \frac{1}{2}\right),(1,2),\left(1, \frac{1}{2}\right), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$
- Example: Consider a market vector sequence $\left(1, \frac{1}{2}\right),(1,2),\left(1, \frac{1}{2}\right), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{\mathrm{UP}}:=\mathbf{b}^{q_{\kappa \mathrm{T}}}$

$$
\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{\mathbf{x}^{T}} \log \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{T}\right)}{\mathrm{W}^{\mathrm{UP}}\left(\mathbf{x}^{T}\right)}=\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{y^{T}} \log \frac{p\left(y^{T}\right)}{q_{\mathrm{KT}}\left(y^{T}\right)}
$$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$
- Example: Consider a market vector sequence $\left(1, \frac{1}{2}\right),(1,2),\left(1, \frac{1}{2}\right), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{\mathrm{UP}}:=\mathbf{b}^{q_{\kappa \mathrm{T}}}$

$$
\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{\mathbf{x}^{T}} \log \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{T}\right)}{\mathrm{W}^{\mathrm{UP}}\left(\mathbf{x}^{T}\right)}=\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{y^{T}} \log \frac{p\left(y^{T}\right)}{q_{\mathrm{KT}}\left(y^{T}\right)}
$$

- Time complexity: $O\left(t^{m-1}\right)$ at round t

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text {i.i.d. }}=\{$ i.i.d. categorical probabilities $\}=\left\{p_{\boldsymbol{\theta}}(\cdot): \boldsymbol{\theta} \in \Delta_{m-1}\right\}$
- For each $\boldsymbol{\theta} \in \Delta_{m-1}, \mathbf{b}^{\boldsymbol{\theta}}:=\mathbf{b}^{p_{\boldsymbol{\theta}}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^{*}$
- Example: Consider a market vector sequence $\left(1, \frac{1}{2}\right),(1,2),\left(1, \frac{1}{2}\right), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{\mathrm{UP}}:=\mathbf{b}^{q_{\kappa т}}$

$$
\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{\mathbf{x}^{T}} \log \frac{\mathrm{~W}^{p}\left(\mathbf{x}^{T}\right)}{\mathrm{W}^{\mathrm{UP}}\left(\mathbf{x}^{T}\right)}=\sup _{p \in \mathcal{P}_{\text {i.i.d. }}} \sup _{y^{T}} \log \frac{p\left(y^{T}\right)}{q_{\mathrm{KT}}\left(y^{T}\right)}
$$

- Time complexity: $O\left(t^{m-1}\right)$ at round t
- Note: for horse race, UP is equivalent to the simple KT strategy

From Universal Gambling to Confidence Sequences

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $\mathrm{E}\left[\mathrm{x}_{t} \mid \mathbf{x}^{t-1}\right] \leq \mathbb{1}$ for every t (and fair if "=")

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $\mathrm{E}\left[\mathrm{x}_{t} \mid \mathbf{x}^{t-1}\right] \leq \mathbb{1}$ for every t (and fair if "=")

Proposition

If $\left(\mathbf{x}_{t}\right)_{t=1}^{\infty}$ is (sub)fair, then $\left(\mathrm{W}_{t}\right)_{t=1}^{\infty}$ of any causal strategy is (super)martingale

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $\mathrm{E}\left[\mathrm{x}_{t} \mid \mathbf{x}^{t-1}\right] \leq \mathbb{1}$ for every t (and fair if "=")

Proposition

If $\left(\mathrm{x}_{t}\right)_{t=1}^{\infty}$ is (sub)fair, then $\left(\mathrm{W}_{t}\right)_{t=1}^{\infty}$ of any causal strategy is (super)martingale

Proof.

For every $t, \mathrm{E}\left[\mathrm{W}_{t} \mid \mathbf{x}^{t-1}\right]=\mathrm{W}_{t-1}\left\langle\mathbf{b}_{t}, \mathrm{E}\left[\mathbf{x}_{t} \mid \mathbf{x}^{t-1}\right]\right\rangle \leq \mathrm{W}_{t-1}\left\langle\mathbf{b}_{t}, \mathbb{1}\right\rangle=\mathrm{W}_{t-1}$

Examples

- Coin betting: $\mathbf{x}_{t}=\left(2 Y_{t}, 2\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{2}$ (e.g., $Y_{t} \sim$ i.i.d. $\left.\operatorname{Bern}\left(\frac{1}{2}\right)\right)$

Examples

- Coin betting: $\mathbf{x}_{t}=\left(2 Y_{t}, 2\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{2}$ (e.g., $Y_{t} \sim$ i.i.d. $\left.\operatorname{Bern}\left(\frac{1}{2}\right)\right)$
- Two-horse race: $\mathbf{x}_{t}=\left(o_{1} Y_{t}, o_{2}\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\frac{1}{o_{1}}+\frac{1}{o_{2}}=1$ and $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{o_{1}}$ (e.g., $Y_{t} \sim$ i.i.d. $\operatorname{Bern}\left(\frac{1}{o_{1}}\right)$)

Examples

- Coin betting: $\mathbf{x}_{t}=\left(2 Y_{t}, 2\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{2}$ (e.g., $Y_{t} \sim$ i.i.d. $\left.\operatorname{Bern}\left(\frac{1}{2}\right)\right)$
- Two-horse race: $\mathbf{x}_{t}=\left(o_{1} Y_{t}, o_{2}\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\frac{1}{o_{1}}+\frac{1}{o_{2}}=1$ and $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{o_{1}}$ (e.g., $Y_{t} \sim$ i.i.d. $\left.\operatorname{Bern}\left(\frac{1}{o_{1}}\right)\right)$
- Continuous two-horse race: $\mathbf{x}_{t}=\left(o_{1} Y_{t}, o_{2}\left(1-Y_{t}\right)\right), Y_{t} \in[0,1]$
- fair if $\frac{1}{o_{1}}+\frac{1}{o_{2}}=1$ and $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{o_{1}}$;
- more like a structured stock market

Examples

- Coin betting: $\mathbf{x}_{t}=\left(2 Y_{t}, 2\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{2}$ (e.g., $Y_{t} \sim$ i.i.d. $\left.\operatorname{Bern}\left(\frac{1}{2}\right)\right)$
- Two-horse race: $\mathbf{x}_{t}=\left(o_{1} Y_{t}, o_{2}\left(1-Y_{t}\right)\right), Y_{t} \in\{0,1\}$
- fair if $\frac{1}{o_{1}}+\frac{1}{o_{2}}=1$ and $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{o_{1}}$ (e.g., $Y_{t} \sim$ i.i.d. $\operatorname{Bern}\left(\frac{1}{o_{1}}\right)$)
- Continuous two-horse race: $\mathbf{x}_{t}=\left(o_{1} Y_{t}, o_{2}\left(1-Y_{t}\right)\right), Y_{t} \in[0,1]$
- fair if $\frac{1}{o_{1}}+\frac{1}{o_{2}}=1$ and $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right]=\frac{1}{o_{1}}$;
- more like a structured stock market

(d) Continuous
two-horse race

Martingales from Continuous Two-Horse Race

- Recall: Assume $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right] \equiv \mu$ for some $\mu \in(0,1)$

Martingales from Continuous Two-Horse Race

- Recall: Assume $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right] \equiv \mu$ for some $\mu \in(0,1)$
- Denote as CTHR (m) the Continuous Two-Horse Race defined by the market vector

$$
\mathbf{x}_{t}=\left(\frac{Y_{t}}{m}, \frac{1-Y_{t}}{1-m}\right)
$$

Martingales from Continuous Two-Horse Race

- Recall: Assume $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right] \equiv \mu$ for some $\mu \in(0,1)$
- Denote as CTHR (m) the Continuous Two-Horse Race defined by the market vector

$$
\mathbf{x}_{t}=\left(\frac{Y_{t}}{m}, \frac{1-Y_{t}}{1-m}\right)
$$

Proposition

Martingales from Continuous Two-Horse Race

- Recall: Assume $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right] \equiv \mu$ for some $\mu \in(0,1)$
- Denote as CTHR (m) the Continuous Two-Horse Race defined by the market vector

$$
\mathbf{x}_{t}=\left(\frac{Y_{t}}{m}, \frac{1-Y_{t}}{1-m}\right)
$$

Proposition

- If $m=\mu$, any wealth process from $\operatorname{CTHR}(m)$ is martingale

Martingales from Continuous Two-Horse Race

- Recall: Assume $\mathrm{E}\left[Y_{t} \mid Y^{t-1}\right] \equiv \mu$ for some $\mu \in(0,1)$
- Denote as CTHR (m) the Continuous Two-Horse Race defined by the market vector

$$
\mathbf{x}_{t}=\left(\frac{Y_{t}}{m}, \frac{1-Y_{t}}{1-m}\right)
$$

Proposition

- If $m=\mu$, any wealth process from $\operatorname{CTHR}(m)$ is martingale
- If $m \neq \mu$, there exists a causal betting strategy whose wealth process from $\operatorname{CTHR}(m)$ is strictly submartingale

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$
- Since $\left(\mathrm{W}\left(Y^{t} ; \mu\right)\right)_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$
\sup _{t \geq 1} \frac{\mathrm{~W}\left(Y^{t} ; \mu\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}
$$

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$
- Since $\left(\mathrm{W}\left(Y^{t} ; \mu\right)\right)_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$
\sup _{t \geq 1} \frac{\mathrm{~W}\left(Y^{t} ; \mu\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}
$$

- Assume this high-probability event happens (w.r.t. the randomness in $\left.\left(Y_{t}\right)_{t=0}^{\infty}\right)$

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$
- Since $\left(\mathrm{W}\left(Y^{t} ; \mu\right)\right)_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$
\sup _{t \geq 1} \frac{\mathrm{~W}\left(Y^{t} ; \mu\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}
$$

- Assume this high-probability event happens (w.r.t. the randomness in $\left.\left(Y_{t}\right)_{t=0}^{\infty}\right)$
- Suppose we "play" $\operatorname{CTHR}(m)$ for each $m \in(0,1)$ in parallel

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$
- Since $\left(\mathrm{W}\left(Y^{t} ; \mu\right)\right)_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$
\sup _{t \geq 1} \frac{\mathrm{~W}\left(Y^{t} ; \mu\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}
$$

- Assume this high-probability event happens (w.r.t. the randomness in $\left.\left(Y_{t}\right)_{t=0}^{\infty}\right)$
- Suppose we "play" $\operatorname{CTHR}(m)$ for each $m \in(0,1)$ in parallel
- At round t, if the cumulative wealth from $\operatorname{CTHR}(m)$ exceeds the threshold W_{0} / δ, i.e.,

$$
\frac{\mathrm{W}\left(Y^{t} ; m\right)}{\mathrm{W}_{0}} \geq \frac{1}{\delta}
$$

then this means that m cannot be μ, and thus exclude m from the candidate list

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For $\operatorname{CTHR}(m)$, we play a strategy $\left(\mathbf{b}\left(Y^{t-1} ; m\right)\right)_{t=1}^{\infty}$ and get $\left(\mathrm{W}\left(Y^{t} ; m\right)\right)_{t=1}^{\infty}$
- Since $\left(\mathrm{W}\left(Y^{t} ; \mu\right)\right)_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$
\sup _{t \geq 1} \frac{\mathrm{~W}\left(Y^{t} ; \mu\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}
$$

- Assume this high-probability event happens (w.r.t. the randomness in $\left.\left(Y_{t}\right)_{t=0}^{\infty}\right)$
- Suppose we "play" $\operatorname{CTHR}(m)$ for each $m \in(0,1)$ in parallel
- At round t, if the cumulative wealth from $\operatorname{CTHR}(m)$ exceeds the threshold W_{0} / δ, i.e.,

$$
\frac{\mathrm{W}\left(Y^{t} ; m\right)}{\mathrm{W}_{0}} \geq \frac{1}{\delta}
$$

then this means that m cannot be μ, and thus exclude m from the candidate list

- If we collect all m whose corresponding wealth never exceeds W_{0} / δ by then, it forms a time-uniform confidence set with level $1-\delta$

Confidence Sequence from CTHR (m)

- Formally, if we define

$$
C_{t}\left(Y^{t} ; \delta\right):=\left\{m \in(0,1): \sup _{1 \leq i \leq t} \frac{\mathrm{~W}\left(\mathbf{x}^{i} ; m\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}\right\},
$$

then

$$
\mathrm{P}\left\{\mu \in C_{t}\left(Y^{t} ; \delta\right), \forall t \geq 1\right\} \geq 1-\delta
$$

Confidence Sequence from CTHR (m)

- Formally, if we define

$$
C_{t}\left(Y^{t} ; \delta\right):=\left\{m \in(0,1): \sup _{1 \leq i \leq t} \frac{\mathrm{~W}\left(\mathrm{x}^{i} ; m\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}\right\}
$$

then

$$
\mathrm{P}\left\{\mu \in C_{t}\left(Y^{t} ; \delta\right), \forall t \geq 1\right\} \geq 1-\delta
$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from $\operatorname{CTHR}(m)$ for $m \neq \mu$

Confidence Sequence from CTHR (m)

- Formally, if we define

$$
C_{t}\left(Y^{t} ; \delta\right):=\left\{m \in(0,1): \sup _{1 \leq i \leq t} \frac{\mathrm{~W}\left(\mathrm{x}^{i} ; m\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}\right\}
$$

then

$$
\mathrm{P}\left\{\mu \in C_{t}\left(Y^{t} ; \delta\right), \forall t \geq 1\right\} \geq 1-\delta
$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from $\operatorname{CTHR}(m)$ for $m \neq \mu$
- We can plug-in any (causal) strategies, so why shouldn't we try universal gambling strategies?

Confidence Sequence from CTHR (m)

- Formally, if we define

$$
C_{t}\left(Y^{t} ; \delta\right):=\left\{m \in(0,1): \sup _{1 \leq i \leq t} \frac{\mathrm{~W}\left(\mathrm{x}^{i} ; m\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}\right\}
$$

then

$$
\mathrm{P}\left\{\mu \in C_{t}\left(Y^{t} ; \delta\right), \forall t \geq 1\right\} \geq 1-\delta
$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from $\operatorname{CTHR}(m)$ for $m \neq \mu$
- We can plug-in any (causal) strategies, so why shouldn't we try universal gambling strategies?
- Orabona and Jun (2021) empirically showed that applying Cover's UP gives tight confidence sequences

A Special Case: $\{0,1\}$-Valued Sequences

- $\operatorname{CTHR}(m)$ becomes the standard horse race $\operatorname{THR}(m)$ if $Y_{t} \in\{0,1\}$

A Special Case: $\{0,1\}$-Valued Sequences

- $\operatorname{CTHR}(m)$ becomes the standard horse race $\operatorname{THR}(m)$ if $Y_{t} \in\{0,1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors

A Special Case: $\{0,1\}$-Valued Sequences

- $\operatorname{CTHR}(m)$ becomes the standard horse race $\operatorname{THR}(m)$ if $Y_{t} \in\{0,1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors
- For $\operatorname{THR}(m)$, the KT strategy yields the cumulative wealth

$$
\mathrm{W}^{\mathrm{KT}}\left(Y^{t} ; m\right)=\mathrm{W}_{0} \phi_{t}\left(\sum_{i=1}^{t} Y_{i} ; \frac{1}{m}, \frac{1}{1-m}\right) q_{\mathrm{KT}}\left(Y^{t}\right),
$$

where $\phi_{t}\left(x ; o_{1}, o_{2}\right):=o_{1}^{x} o_{2}^{t-x}$ for $x \in[0, t]$ and $q_{\mathrm{KT}}\left(y^{t}\right)$ is the KT probability

A Special Case: $\{0,1\}$-Valued Sequences

- $\operatorname{CTHR}(m)$ becomes the standard horse race $\operatorname{THR}(m)$ if $Y_{t} \in\{0,1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors
- For $\operatorname{THR}(m)$, the KT strategy yields the cumulative wealth

$$
\mathrm{W}^{\mathrm{KT}}\left(Y^{t} ; m\right)=\mathrm{W}_{0} \phi_{t}\left(\sum_{i=1}^{t} Y_{i} ; \frac{1}{m}, \frac{1}{1-m}\right) q_{\mathrm{KT}}\left(Y^{t}\right),
$$

where $\phi_{t}\left(x ; o_{1}, o_{2}\right):=o_{1}^{x} o_{2}^{t-x}$ for $x \in[0, t]$ and $q_{\mathrm{KT}}\left(y^{t}\right)$ is the KT probability

- Define

$$
C_{t}^{\mathrm{KT}}\left(y^{t} ; \delta\right):=\left\{m \in[0,1]: \sup _{1 \leq i \leq t} \frac{\mathrm{~W}^{\mathrm{KT}}\left(y^{i} ; m\right)}{\mathrm{W}_{0}}<\frac{1}{\delta}\right\}
$$

Confidence Sequence from KT Betting

Theorem

$\left(C_{t}^{\mathrm{KT}}\left(Y^{t} ; \delta\right)\right)_{t=1}^{\infty}$ is a time-uniform confidence interval with level $1-\delta$

[^2]
Confidence Sequence from KT Betting

Theorem

$\left(C_{t}^{\mathrm{KT}}\left(Y^{t} ; \delta\right)\right)_{t=1}^{\infty}$ is a time-uniform confidence interval with level $1-\delta$

Proof.

- Apply Ville's inequality
- The set is an interval, since $m \mapsto \phi_{t}\left(x ; \frac{1}{m}, \frac{1}{1-m}\right)$ is log-convex
${ }^{1}$ The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

Confidence Sequence from KT Betting

Theorem

$\left(C_{t}^{\mathrm{KT}}\left(Y^{t} ; \delta\right)\right)_{t=1}^{\infty}$ is a time-uniform confidence interval with level $1-\delta$

Proof.

- Apply Ville's inequality
- The set is an interval, since $m \mapsto \phi_{t}\left(x ; \frac{1}{m}, \frac{1}{1-m}\right)$ is log-convex
- Note: the size of the interval behaves as $\sqrt{\frac{2}{t} \log \frac{1}{\delta}+\frac{1}{t} \log t+o(1)}$ for $t \gg 1$, which is comparable to $\sqrt{\frac{2}{t} \log \frac{1}{\delta}}$ from the standard Hoeffding ${ }^{1}$

[^3]
A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR (m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR (m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for $\operatorname{CTHR}(m)$ gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
Q. Can there be a conceptually simpler way to approximate Cover's UP with $O(1)$ complexity per round?

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for $\operatorname{CTHR}(m)$ gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
Q. Can there be a conceptually simpler way to approximate Cover's UP with $O(1)$ complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for $\operatorname{CTHR}(m)$ gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
Q. Can there be a conceptually simpler way to approximate Cover's UP with $O(1)$ complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)
- Recall that Cover's UP is defined as a mixture of wealths of CRPs

A General Case: $[0,1]$-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for $\operatorname{CTHR}(m)$ gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but $O(t)$ complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
Q. Can there be a conceptually simpler way to approximate Cover's UP with $O(1)$ complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)
- Recall that Cover's UP is defined as a mixture of wealths of CRPs
- Consider a tight lower bound of the CRP wealth and take a mixture over the lower bounds

A Lower Bound on the Wealth of CRP

- Let $\bar{a}:=1-a$ for any $a \in \mathbb{R}$

A Lower Bound on the Wealth of CRP

- Let $\bar{a}:=1-a$ for any $a \in \mathbb{R}$
- For $\operatorname{CTHR}(m)$, we can lower-bound the multiplicative gain with $\operatorname{CRP}(b)$ as

A Lower Bound on the Wealth of CRP

- Let $\bar{a}:=1-a$ for any $a \in \mathbb{R}$
- For $\operatorname{CTHR}(m)$, we can lower-bound the multiplicative gain with $\operatorname{CRP}(b)$ as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1))

For any $n \in \mathbb{N}$ and $m \in(0,1)$, we have
$\log \left(b \frac{y}{m}+\bar{b} \frac{\bar{y}}{\bar{m}}\right) \geq \sum_{k=1}^{2 n-1} \frac{1}{k}\left(1-\frac{\bar{b}}{\bar{m}}\right)^{k}\left\{\left(1-\frac{y}{m}\right)^{2 n}-\left(1-\frac{y}{m}\right)^{k}\right\}+\left(1-\frac{y}{m}\right)^{2 n} \log \frac{\bar{b}}{\bar{m}}$
if $b \in[m, 1)$ and $y \geq 0$

A Lower Bound on the Wealth of CRP

- Let $\bar{a}:=1-a$ for any $a \in \mathbb{R}$
- For $\operatorname{CTHR}(m)$, we can lower-bound the multiplicative gain with $\operatorname{CRP}(b)$ as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1))

For any $n \in \mathbb{N}$ and $m \in(0,1)$, we have

$$
\log \left(b \frac{y}{m}+\bar{b} \frac{\bar{y}}{\bar{m}}\right) \geq \log \phi_{n}\left(\frac{\bar{b}}{\bar{m}} ;\left(\left(1-\frac{y}{m}\right)^{2 n}-\left(1-\frac{y}{m}\right)^{k}\right)_{k=1}^{2 n-1},\left(1-\frac{y}{m}\right)^{2 n}\right)
$$

if $b \in[m, 1)$ and $y \geq 0$, where

$$
\phi_{n}(x ; \rho, \eta):=\exp \left(\sum_{k=1}^{2 n-1} \frac{(1-x)^{k}}{k} \rho_{k}+\eta \log x\right)
$$

- Can view $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$ as an unnormalized exponential-family distribution

A Lower Bound on the Wealth of CRP

- Let $\bar{a}:=1-a$ for any $a \in \mathbb{R}$
- For $\operatorname{CTHR}(m)$, we can lower-bound the multiplicative gain with $\operatorname{CRP}(b)$ as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1))

For any $n \in \mathbb{N}$ and $m \in(0,1)$, we have

$$
\log \left(b \frac{y}{m}+\bar{b} \frac{\bar{y}}{\bar{m}}\right) \geq \log \phi_{n}\left(\frac{\bar{b}}{\bar{m}} ;\left(\left(1-\frac{y}{m}\right)^{2 n}-\left(1-\frac{y}{m}\right)^{k}\right)_{k=1}^{2 n-1},\left(1-\frac{y}{m}\right)^{2 n}\right)
$$

if $b \in[m, 1)$ and $y \geq 0$, where

$$
\phi_{n}(x ; \rho, \eta):=\exp \left(\sum_{k=1}^{2 n-1} \frac{(1-x)^{k}}{k} \rho_{k}+\eta \log x\right)
$$

- Can view $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$ as an unnormalized exponential-family distribution
- Lower-bound the logarithm by moments of y, i.e., $\left(1, y, \ldots, y^{2 n}\right)$

Key Lemma for the Proof

Lemma (Generalization of (Fan et al., 2015, Lemma 4.1))

For an integer $\ell \geq 1$, if we define

$$
f_{\ell}(t):= \begin{cases}\left(\log (1+t)-\sum_{k=1}^{\ell-1}(-1)^{k+1} \frac{t^{k}}{k}\right) /\left((-1)^{\ell} \frac{t^{\ell}}{\ell}\right) & \text { if } t>-1 \text { and } t \neq 0 \\ -1 & \text { if } t=0\end{cases}
$$

then $t \mapsto f_{\ell}(t)$ is continuous and strictly increasing over $(-1, \infty)$

- Note: Fan et al. (2015) considered $\ell=2$, i.e.,

$$
f_{2}(t)= \begin{cases}\frac{\log (1+t)-t}{t^{2} / 2} & \text { if } t>-1 \text { and } t \neq 0 \\ -1 & \text { if } t=0\end{cases}
$$

A Lower Bound on the Cumulative Wealth of CRP

- Since it is easy to check $\phi_{n}(x ; \boldsymbol{\rho}, \eta) \phi_{n}\left(x ; \boldsymbol{\rho}^{\prime}, \eta^{\prime}\right)=\phi_{n}\left(x ; \boldsymbol{\rho}+\boldsymbol{\rho}, \eta+\eta^{\prime}\right)$,

Lemma

For any $n \in \mathbb{N}, m \in(0,1), b \in[0,1]$, and $y^{t} \in[0,1]^{t}$, we have

$$
\log \frac{\mathbf{W}_{t}^{b}\left(y^{t} ; m\right)}{\mathbf{W}_{0}} \geq \log \phi_{n}\left(\frac{\bar{b}}{\bar{m}} ; \rho_{n}\left(y^{t} ; m\right), \eta_{n}\left(y^{t} ; m\right)\right)
$$

if $m<b<1$, where $\eta_{n}\left(y^{t} ; m\right):=\sum_{i=1}^{t}\left(1-\frac{y_{i}}{m}\right)^{2 n}$ and

$$
\left(\rho_{n}\left(y^{t} ; m\right)\right)_{k}:=\sum_{i=1}^{t}\left\{\left(1-\frac{y_{i}}{m}\right)^{2 n}-\left(1-\frac{y_{i}}{m}\right)^{k}\right\} \quad \text { for } k=1, \ldots, 2 n-1
$$

- Lower-bound the logarithm by moments of y^{t}, i.e., $\left(\sum_{i=1}^{t} y_{i}^{j}\right)_{j=1}^{2 n}$
- Complexity from $O(t)$ to $O(n)$

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- For example, with the uniform prior, the mixture of wealth lower bounds becomes

$$
\bar{m} Z_{n}\left(\rho_{n}\left(y^{t} ; m\right), \eta_{n}\left(y^{t} ; m\right)\right)+m Z_{n}\left(\rho_{n}\left(\bar{y}^{t} ; \bar{m}\right), \eta_{n}\left(\bar{y}^{t} ; \bar{m}\right)\right),
$$

where $Z_{n}(\rho, \eta):=\int_{0}^{1} \phi_{n}(x ; \rho, \eta) \mathrm{d} x$

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \rho, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- For example, with the uniform prior, the mixture of wealth lower bounds becomes

$$
\bar{m} Z_{n}\left(\rho_{n}\left(y^{t} ; m\right), \eta_{n}\left(y^{t} ; m\right)\right)+m Z_{n}\left(\rho_{n}\left(\bar{y}^{t} ; \bar{m}\right), \eta_{n}\left(\bar{y}^{t} ; \bar{m}\right)\right),
$$

where $Z_{n}(\rho, \eta):=\int_{0}^{1} \phi_{n}(x ; \rho, \eta) \mathrm{d} x$

- We can construct a time-uniform confidence interval using this "mixture of wealth lower bounds"!

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_{n}(x ; \rho, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- For example, with the uniform prior, the mixture of wealth lower bounds becomes

$$
\bar{m} Z_{n}\left(\rho_{n}\left(y^{t} ; m\right), \eta_{n}\left(y^{t} ; m\right)\right)+m Z_{n}\left(\rho_{n}\left(\bar{y}^{t} ; \bar{m}\right), \eta_{n}\left(\bar{y}^{t} ; \bar{m}\right)\right)
$$

where $Z_{n}(\rho, \eta):=\int_{0}^{1} \phi_{n}(x ; \rho, \eta) \mathrm{d} x$

- We can construct a time-uniform confidence interval using this "mixture of wealth lower bounds"!
- We call this $\operatorname{LBUP}(n)$, where n is the approximation order

Caveats

- Computational bottleneck: computing the normalization constant $Z_{n}(\rho, \eta)$ of the form

$$
\int_{0}^{1} x^{\eta} \exp \left(\sum_{k=0}^{2 n-1} a_{k} x^{k}\right) \mathrm{d} x
$$

- Hence, $O(1)$ per round in principle, but may take longer than running exact UP due to numerical integration steps
- Larger n leads to better approximation, but with increased numerical instability; $n=2$ or $n=3$ empirically work well
- Bad approximation in a small sample regime
- Hybrid UP: run UP for the first few samples and switch to LBUP

Evolution of Wealth Processes

- The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta=0.05$

Figure: An i.i.d. Bern(0.25) process

Evolution of Wealth Processes

- The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta=0.05$

Figure: An i.i.d. Beta(1,3) process

Evolution of Wealth Processes

- The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta=0.05$

Figure: An i.i.d. Beta $(10,30)$ process

Experiments

- Confidence sequences with level 0.95 (i.e., $\delta=0.05$)
- CB: betting strategy from another gambling construction
- HR: KT strategy
- UP: exact Cover's UP strategy
- LBUP: proposed lower-bound approach
- HybridUP: run exact UP for the first few steps and switch to LBUP
- PRECiSE (Orabona and Jun, 2021)

Experiments

Figure: With i.i.d. Bern(0.25) processes

Experiments

Figure: With i.i.d. Beta(1,3) processes

Experiments

Figure: With i.i.d. Beta $(10,30)$ processes

Take-Home Messages

- Confidence sequence is an important tool in modern data science
- Gambling with respect to probability induced strategies \equiv probability assignment
- Confidence sequences from universal portfolios are very tight with small samples, but suffers high complexity
- They can be "efficiently" approximated by a mixture of lower bounds approach!

Take-Home Messages

- Confidence sequence is an important tool in modern data science
- Gambling with respect to probability induced strategies \equiv probability assignment
- Confidence sequences from universal portfolios are very tight with small samples, but suffers high complexity
- They can be "efficiently" approximated by a mixture of lower bounds approach!
Q. Can we construct a time-uniform confidence set for bounded vectors? Yes!
Q. Can there be a gambling other than $\operatorname{CTHR}(m)$ that corresponds to some other statistics applications?

References I

Thomas M Cover. Universal portfolios. Math. Financ., 1(1):1-29, 1991.
Thomas M Cover. Elements of information theory. John Wiley \& Sons, 2006.
Thomas M Cover and Erik Ordentlich. Universal portfolios with side information. IEEE Trans. Inf. Theory, 42(2):348-363, 1996.
Donald A Darling and Herbert Robbins. Confidence sequences for mean, variance, and median. Proc. Natl. Acad. Sci. U. S. A., 58(1):66, 1967.

Xiequan Fan, Ion Grama, and Quansheng Liu. Exponential inequalities for martingales with applications. Electron. J. Probab., 20:1-22, 2015.
Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparametric, nonasymptotic confidence sequences. Ann. Statist., 49(2):1055-1080, 2021.
Kwang-Sung Jun and Francesco Orabona. Parameter-free online convex optimization with sub-exponential noise. In Conf. Learn. Theory, pages 1802-1823. PMLR, 2019.
Raphail Krichevsky and Victor Trofimov. The performance of universal encoding. IEEE Trans. Inf. Theory, 27(2):199-207, 1981.

References II

Tze Leung Lai. On confidence sequences. Ann. Statist., 4(2):265-280, 1976.
Francesco Orabona and Kwang-Sung Jun. Tight concentrations and confidence sequences from the regret of universal portfolio. arXiv preprint arXiv:2110.14099, 2021.
Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter Koolen. Admissible anytime-valid sequential inference must rely on nonnegative martingales. arXiv preprint arXiv:2009.03167, September 2020.
J Jon Ryu and Alankrita Bhatt. On confidence sequences for bounded random processes via universal gambling strategies. arXiv preprint arXiv:2207.12382, 2022.
Jean Ville. Etude critique de la notion de collectif. Bull. Amer. Math. Soc, 45(11):824, 1939.
Ian Waudby-Smith and Aaditya Ramdas. Confidence sequences for sampling without replacement. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Adv. Neural Inf. Proc. Syst., volume 33, pages 20204-20214. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/ e96c7de8f6390b1e6c71556e4e0a4959-Paper.pdf.

References III

Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting. arXiv preprint arXiv:2010.09686, 2020b.
Qun Xie and Andrew R Barron. Asymptotic minimax regret for data compression, gambling, and prediction. IEEE Trans. Inf. Theory, 46(2):431-445, 2000.

[^0]: Image credit: Created with Template.net Free Templates

[^1]: Image credit: Created with Template.net Free Templates

[^2]: ${ }^{1}$ The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

[^3]: ${ }^{1}$ The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

