Time-Uniform Confidence Sequences from Universal Gambling

Jongha (Jon) Ryu

MIT

January 6, 2023

Joint work with Alankrita Bhatt (Caltech)

• Let $Y_1, Y_2, ... \sim i.i.d. p(x)$ over [0, 1]

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$
- **Problem**: Estimate μ based on $Y^t := (Y_1, \ldots, Y_t)$

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$
- **Problem**: Estimate μ based on $Y^t := (Y_1, \ldots, Y_t)$
- An (easy) answer: the empirical mean $\hat{\mu}_t := \frac{1}{t} \sum_{i=1}^t Y_i$

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$
- **Problem**: Estimate μ based on $Y^t := (Y_1, \ldots, Y_t)$
- An (easy) answer: the empirical mean $\hat{\mu}_t := \frac{1}{t} \sum_{i=1}^t Y_i$

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$
- **Problem**: Estimate μ based on $Y^t := (Y_1, \ldots, Y_t)$
- An (easy) answer: the empirical mean $\hat{\mu}_t := \frac{1}{t} \sum_{i=1}^t Y_i$

But how accurate is it?

- Let $Y_1, Y_2, \ldots \sim$ i.i.d. p(x) over [0, 1]
- Suppose $\mathsf{E}_{p(y)}[Y] = \mu$
- **Problem**: Estimate μ based on $Y^t := (Y_1, \ldots, Y_t)$
- An (easy) answer: the empirical mean $\hat{\mu}_t := \frac{1}{t} \sum_{i=1}^t Y_i$

- But how accurate is it?
- For reliable inference, we need to quantify confidence

• We can use concentration inequalities!

- We can use concentration inequalities!
- If we knew Var(Y) a priori, Chebyshev gives

$$\mathsf{P}(|\mu - \hat{\mu}_t| > \epsilon) \le \frac{\operatorname{Var}(Y)}{t\epsilon^2}$$

$$\mu \in \left(\hat{\mu}_t - \sqrt{rac{1}{t}rac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_t + \sqrt{rac{1}{t}rac{\operatorname{Var}(Y)}{\delta}}
ight)$$
 with prob. $\geq 1 - \delta$

- We can use concentration inequalities!
- If we knew Var(Y) a priori, Chebyshev gives

$$\mathsf{P}(|\mu - \hat{\mu}_t| > \epsilon) \le \frac{\operatorname{Var}(Y)}{t\epsilon^2}$$

$$\mu \in \left(\hat{\mu}_t - \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}\right)$$
 with prob. $\geq 1 - \delta$

- We can use concentration inequalities!
- Since $(Y_t)_{t=1}^{\infty}$ is bounded, Hoeffding gives

$$\mathsf{P}(|\mu - \hat{\mu}_t| > \epsilon) \le 2e^{-2\epsilon^2 t},$$

$$\mu \in \left(\hat{\mu}_t - \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}\right)$$
 with prob. $\geq 1 - \delta$

- We can use concentration inequalities!
- Since $(Y_t)_{t=1}^{\infty}$ is bounded, Hoeffding gives

$$\mathsf{P}(|\mu - \hat{\mu}_t| > \epsilon) \le 2e^{-2\epsilon^2 t},$$

$$\mu \in \left(\hat{\mu}_t - \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}\right)$$
 with prob. $\geq 1 - \delta$

• A set $C_t(\delta)$ is a confidence set for μ at level $1 - \delta$, if $C_t(\delta)$ is a function of Y^t and

 $\mathsf{P}(\mu \in C_t(\delta)) \ge 1 - \delta$

• A set $C_t(\delta)$ is a confidence set for μ at level $1 - \delta$, if $C_t(\delta)$ is a function of Y^t and

$$\mathsf{P}(\mu \in C_t(\delta)) \ge 1 - \delta$$

- For example,
 - Chebyshev: $C_t(\delta) = (\hat{\mu}_t \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}})$
 - Hoeffding: $C_t(\delta) = \left(\hat{\mu}_t \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}\right)$

• A set $C_t(\delta)$ is a confidence set for μ at level $1 - \delta$, if $C_t(\delta)$ is a function of Y^t and

$$\mathsf{P}(\mu \in C_t(\delta)) \ge 1 - \delta$$

- For example,
 - Chebyshev: $C_t(\delta) = (\hat{\mu}_t \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}})$
 - Hoeffding: $C_t(\delta) = \left(\hat{\mu}_t \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}\right)$
- Now, suppose we wish to decide to keep or stop sampling Y_t to estimate μ given confidence level on the fly (sequentially)

• A set $C_t(\delta)$ is a confidence set for μ at level $1 - \delta$, if $C_t(\delta)$ is a function of Y^t and

$$\mathsf{P}(\mu \in C_t(\delta)) \ge 1 - \delta$$

- For example,
 - Chebyshev: $C_t(\delta) = (\hat{\mu}_t \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{t} \frac{\operatorname{Var}(Y)}{\delta}})$
 - Hoeffding: $C_t(\delta) = \left(\hat{\mu}_t \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}, \hat{\mu}_t + \sqrt{\frac{1}{2t}\log\frac{2}{\delta}}\right)$
- Now, suppose we wish to decide to keep or stop sampling Y_t to estimate μ given confidence level on the fly (sequentially)
- For such online data processing, we need to construct a sequence of confidence intervals that is valid at any time

Time-Uniform Confidence Sets

• Time-uniform confidence sets (a.k.a. confidence sequence)

 $\mathsf{P}(\mu \in C_t, \ \forall t \ge 1) \ge 1 - \delta$

Time-Uniform Confidence Sets

• Time-uniform confidence sets (a.k.a. confidence sequence)

$$\mathsf{P}(\mu \in C_t, \ \forall t \ge 1) \ge 1 - \delta$$

• Contrast with the standard definition of confidence intervals:

$$\mathsf{P}(\mu \in C_t) \ge 1 - \delta, \; \forall t \ge 1$$

Time-Uniform Confidence Sets

• Time-uniform confidence sets (a.k.a. confidence sequence)

 $\mathsf{P}(\mu \in C_t, \ \forall t \ge 1) \ge 1 - \delta$

• Contrast with the standard definition of confidence intervals:

$$\mathsf{P}(\mu \in C_t) \ge 1 - \delta, \ \forall t \ge 1$$

 Originally studied by Darling and Robbins (1967); Lai (1976), and recently resurrected by some statisticians (Ramdas et al., 2020; Waudby-Smith and Ramdas, 2020a,b; Howard et al., 2021) and computer scientists (Jun and Orabona, 2019; Orabona and Jun, 2021)

• A canonical probabilistic model for gambling

- A canonical probabilistic model for gambling
- A random process $(W_t)_{t=0}^{\infty}$ is said to be

- A canonical probabilistic model for gambling
- A random process $(W_t)_{t=0}^{\infty}$ is said to be
 - martingale if for any $t \ge 1$,

 $\mathsf{E}[W_t | W_1, \dots, W_{t-1}] = W_{t-1}$

- A canonical probabilistic model for gambling
- A random process $(W_t)_{t=0}^{\infty}$ is said to be
 - martingale if for any $t \ge 1$,

$$\mathsf{E}[W_t|W_1,\ldots,W_{t-1}]=W_{t-1}$$

i.e., given history, the expected wealth does not change;

- A canonical probabilistic model for gambling
- A random process $(W_t)_{t=0}^{\infty}$ is said to be
 - martingale if for any $t \ge 1$,

$$\mathsf{E}[W_t|W_1,\ldots,W_{t-1}]=W_{t-1}$$

i.e., given history, the expected wealth does not change;

• **super**martingale if for any $t \ge 1$,

$$\mathsf{E}[W_t|W_1,\ldots,W_{t-1}] \le W_{t-1}$$

- A canonical probabilistic model for gambling
- A random process $(W_t)_{t=0}^{\infty}$ is said to be
 - martingale if for any $t \ge 1$,

$$\mathsf{E}[W_t|W_1,\ldots,W_{t-1}]=W_{t-1}$$

i.e., given history, the expected wealth does not change;

• **super**martingale if for any $t \ge 1$,

$$\mathsf{E}[W_t|W_1,\ldots,W_{t-1}] \le W_{t-1}$$

i.e., given history, the expected wealth always does not increase

• Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

• Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$\mathsf{P}\Big(\frac{W}{\mathsf{E}[W]} \ge \frac{1}{\delta}\Big) \le \delta$$

• Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$P\left(\frac{W}{\mathsf{E}[W]} \ge \frac{1}{\delta}\right) \le \delta$$

• In martingale theory, there is a time-uniform counterpart:

• Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$\mathsf{P}\Big(\frac{W}{\mathsf{E}[W]} \ge \frac{1}{\delta}\Big) \le \delta$$

• In martingale theory, there is a time-uniform counterpart:

Ville's inequality (Ville, 1939)

For a nonnegative supermartingale sequence $(W_t)_{t=0}^{\infty}$ with $W_0 > 0$,

$$\mathsf{P}\Big\{\sup_{t\geq 1}\frac{W_t}{W_0}\geq \frac{1}{\delta}\Big\}\leq \delta$$

Supermartingales from Gambling

• A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- Wait, what is gambling?

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- Wait, what is gambling?
- As a slight detour, let's review canonical gambling problems and some universal gambling strategies

Universal Gambling

Coin Betting

• Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$

Coin Betting

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t, 1 q_t)$

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t,1-q_t)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t,1-q_t)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_t := q(1|y^{t-1}) \in [0,1]$

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t,1-q_t)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_t := q(1|y^{t-1}) \in [0,1]$
- The recursive equation:

$$\mathbf{W}_{t} = \mathbf{W}_{t-1} 2q_{t}^{\mathbb{1}\{y_{t}=1\}} (1-q_{t})^{\mathbb{1}\{y_{t}=0\}} = \mathbf{W}_{t-1} 2q(y_{t}|y^{t-1})$$

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t,1-q_t)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_t := q(1|y^{t-1}) \in [0,1]$
- The recursive equation:

$$\mathbf{W}_{t} = \mathbf{W}_{t-1} 2q_{t}^{\mathbb{I}\{y_{t}=1\}} (1-q_{t})^{\mathbb{I}\{y_{t}=0\}} = \mathbf{W}_{t-1} 2q(y_{t}|y^{t-1})$$

• Cumulative wealth: starting with \$W₀,

$$\mathbf{W}_T = \mathbf{W}_0 \prod_{t=1}^T 2q(y_t | y^{t-1}) = \mathbf{W}_0 2^T q(y^T),$$

where $q(y^T) := \prod_{t=1}^T q(y_t | y^{t-1})$

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Wealth ratio

$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- **Regret** = log(wealth ratio)

$$\log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Regret w.r.t. the best reference strategy

$$\max_{p \in \mathcal{P}} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$\max_{y^T} \max_{p \in \mathcal{P}} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$\max_{y^T} \max_{p \in \mathcal{P}} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

If o(T), the gambler q is said to be universal w.r.t. \mathcal{P}

- Let $W_t := W^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^{\infty}$
- For some $\mathcal{P} = \{$ reference strategies $p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$\max_{y^T} \max_{p \in \mathcal{P}} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

If o(T), the gambler q is said to be universal w.r.t. \mathcal{P}

• The best strategy is called minimax optimal

$$\min_{q} \max_{p \in \mathcal{P}} \max_{y^T} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)} \text{ by definition}$$

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)}$$
 by definition

Binary prediction under log loss

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)}$$
 by definition

- Binary prediction under log loss
 - At each round t, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)}$$
 by definition

- Binary prediction under log loss
 - At each round *t*, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$
 - After observing $y_t \in \{0, 1\}$, suffer loss $\log \frac{1}{q(y_t|y^{t-1})}$

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)}$$
 by definition

- Binary prediction under log loss
 - At each round *t*, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$
 - After observing $y_t \in \{0, 1\}$, suffer loss $\log \frac{1}{q(y_t|y^{t-1})}$
 - The cumulative regret w.r.t. a reference probability $p(\boldsymbol{y}^t)$ is

$$\sum_{t=1}^{T} \log \frac{1}{q(y_t|y^{t-1})} - \sum_{t=1}^{T} \log \frac{1}{p(y_t|y^{t-1})} = \log \frac{p(y^T)}{q(y^T)}$$

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)} \text{ by definition}$$

- Binary prediction under log loss
 - At each round *t*, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$
 - After observing $y_t \in \{0, 1\}$, suffer loss $\log \frac{1}{q(y_t|y^{t-1})}$
 - The cumulative regret w.r.t. a reference probability $p(\boldsymbol{y}^t)$ is

$$\sum_{t=1}^{T} \log \frac{1}{q(y_t|y^{t-1})} - \sum_{t=1}^{T} \log \frac{1}{p(y_t|y^{t-1})} = \log \frac{p(y^T)}{q(y^T)}$$

 \therefore coin betting \equiv binary prediction under log loss (\equiv lossless binary compression)

• Note:
$$\frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)} \text{ by definition}$$

- Binary prediction under log loss
 - At each round *t*, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$
 - After observing $y_t \in \{0, 1\}$, suffer loss $\log \frac{1}{q(y_t|y^{t-1})}$
 - The cumulative regret w.r.t. a reference probability $p(y^t)$ is

$$\sum_{t=1}^{T} \log \frac{1}{q(y_t|y^{t-1})} - \sum_{t=1}^{T} \log \frac{1}{p(y_t|y^{t-1})} = \log \frac{p(y^T)}{q(y^T)}$$

 \therefore coin betting \equiv binary prediction under log loss (\equiv lossless binary compression)

 \therefore universal compression \rightarrow universal betting!

• $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\},$ where $p_{\theta}(1|y^{t-1}) = \theta$

- $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\},$ where $p_{\theta}(1|y^{t-1}) = \theta$
- Cumulative wealth:

$$\mathsf{W}^{\theta}(y^T) := \mathsf{W}_0 2^T p_{\theta}(y^T),$$

where $p_{\theta}(y^T)$ is the "probability" under $y^T \sim \text{ i.i.d. Bern}(\theta)$

- $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\},$ where $p_{\theta}(1|y^{t-1}) = \theta$
- Cumulative wealth:

$$\mathsf{W}^{\theta}(y^T) := \mathsf{W}_0 2^T p_{\theta}(y^T),$$

where $p_{\theta}(y^T)$ is the "probability" under $y^T \sim \text{ i.i.d. Bern}(\theta)$

• Fact: p_{θ^*} is *optimal* if $y^T \sim \text{ i.i.d. Bern}(\theta^*)$ (a.k.a. Kelly betting)

- $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\}, \text{ where } p_{\theta}(1|y^{t-1}) = \theta$
- Cumulative wealth:

$$\mathsf{W}^{\theta}(y^T) := \mathsf{W}_0 2^T p_{\theta}(y^T),$$

where $p_{\theta}(y^T)$ is the "probability" under $y^T \sim \text{ i.i.d. Bern}(\theta)$

- Fact: p_{θ^*} is *optimal* if $y^T \sim \text{ i.i.d. Bern}(\theta^*)$ (a.k.a. Kelly betting)
- Krichevsky-Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

$$q_{\mathsf{KT}}(1|y^{t-1}) := \frac{1}{t} \Big(\sum_{i=1}^{t-1} y_i + \frac{1}{2} \Big)$$

- $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\},$ where $p_{\theta}(1|y^{t-1}) = \theta$
- Cumulative wealth:

$$\mathsf{W}^{\theta}(y^T) := \mathsf{W}_0 2^T p_{\theta}(y^T),$$

where $p_{\theta}(y^T)$ is the "probability" under $y^T \sim \text{ i.i.d. Bern}(\theta)$

- Fact: p_{θ^*} is *optimal* if $y^T \sim \text{ i.i.d. Bern}(\theta^*)$ (a.k.a. Kelly betting)
- Krichevsky-Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

$$q_{\mathsf{KT}}(1|y^{t-1}) := \frac{1}{t} \Big(\sum_{i=1}^{t-1} y_i + \frac{1}{2} \Big)$$

Asymptotically minimax optimal (Xie and Barron, 2000)

$$\max_{\theta \in [0,1]} \max_{y^T} \log \frac{p_{\theta}(y^T)}{q_{\mathsf{KT}}(y^T)} = \frac{1}{2} \log T + \frac{1}{2} \log \frac{\pi}{2} + o(1)$$

Mixture Probability

• The KT probability $q_{\mathrm{KT}}(\cdot|y^{t-1})$ is induced by a mixture probability, i.e.,

$$q_{\mathrm{KT}}(y^T) \equiv \int_0^1 p_{\theta}(y^T) \,\mathrm{d}\pi(\theta)$$

for $\pi(\theta) = \text{Beta}(\theta|\frac{1}{2}, \frac{1}{2})$

Mixture Probability

• The KT probability $q_{\rm KT}(\cdot|y^{t-1})$ is induced by a mixture probability, i.e.,

$$q_{\mathrm{KT}}(y^T) \equiv \int_0^1 p_{\theta}(y^T) \,\mathrm{d}\pi(\theta)$$

for $\pi(\theta) = \text{Beta}(\theta|\frac{1}{2}, \frac{1}{2})$

• In other words, KT strategy attains the mixture wealth,

$$\mathsf{W}^{\mathsf{KT}}(\boldsymbol{y}^T) = \mathsf{W}_0 \boldsymbol{2}^T q_{\mathsf{KT}}(\boldsymbol{y}^T) = \int_0^1 \mathsf{W}^{\boldsymbol{\theta}}(\boldsymbol{y}^T) \,\mathrm{d}\boldsymbol{\pi}(\boldsymbol{\theta})$$

Mixture Probability

• The KT probability $q_{\mathrm{KT}}(\cdot|y^{t-1})$ is induced by a mixture probability, i.e.,

$$q_{\mathrm{KT}}(y^T) \equiv \int_0^1 p_{\theta}(y^T) \,\mathrm{d}\pi(\theta)$$

for $\pi(\theta) = \text{Beta}(\theta|\frac{1}{2}, \frac{1}{2})$

• In other words, KT strategy attains the mixture wealth,

$$\mathsf{W}^{\mathsf{KT}}(y^T) = \mathsf{W}_0 2^T q_{\mathsf{KT}}(y^T) = \int_0^1 \mathsf{W}^{\theta}(y^T) \,\mathrm{d}\pi(\theta)$$

• So, mixture is nice!

• Horses: $1, 2, \ldots, m$

- Horses: $1, 2, \ldots, m$
- Odds: o_1, o_2, \ldots, o_m

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$\mathsf{W}^q(y^T) = \mathsf{W}_0 \prod_{t=1}^T o_{y_t} q(y_t | y^{t-1})$$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$\mathsf{W}^q(y^T) = \mathsf{W}_0 \prod_{t=1}^T o_{y_t} q(y_t | y^{t-1})$$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t} | y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t} = z\}} q(y^{T})$$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t}|y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t}=z\}} q(y^{T})$$

• Regret:
$$\log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t}|y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t}=z\}} q(y^{T})$$

• Regret:
$$\log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

Horse Race

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t}|y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t}=z\}} q(y^{T})$$

• Regret:
$$\log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \log \frac{p(y^T)}{q(y^T)}$$

Image credit: Created with Template.net Free Templates

Horse Race

- Horses: $1, 2, \ldots, m$
- Odds: $o_1, o_2, ..., o_m$
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t}|y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t}=z\}} q(y^{T})$$

• Regret: $\log \frac{W^p(y^T)}{W^q(y^T)} = \log \frac{p(y^T)}{q(y^T)} \Rightarrow$ equivalent to *m*-ary prediction under log loss!

Image credit: Created with Template.net Free Templates

Jon Ryu

Horse Race

- Horses: $1, 2, \ldots, m$
- Odds: o_1, o_2, \ldots, o_m
- Outcome: $y_t \in [m]$
- Bets: $(q(1|y^{t-1}), \dots, q(m|y^{t-1})) \in \Delta_{m-1}$
- Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$
- Cumulative wealth:

$$W^{q}(y^{T}) = W_{0} \prod_{t=1}^{T} o_{y_{t}} q(y_{t}|y^{t-1}) = W_{0} \prod_{z \in [m]} o_{z}^{\sum_{t=1}^{T} \mathbb{1}\{y_{t}=z\}} q(y^{T})$$

• Regret: $\log \frac{W^p(y^T)}{W^q(y^T)} = \log \frac{p(y^T)}{q(y^T)} \Rightarrow$ equivalent to *m*-ary prediction under log loss!

• KT strategy: $q_{\text{KT}}(y^T) := \int_{\Delta_{m-1}} p_{\theta}(y^T) \, \mathrm{d}\pi(\theta)$, where $\pi(\theta) = \text{Dir}(\theta|\frac{1}{2}, \dots, \frac{1}{2})$

Image credit: Created with Template.net Free Templates

Jon Ryu

• Stocks: $1, 2, \ldots, m$

Selected asset performance since Jan 3 high for S&P 500

Note: Data as of June 13 morning trading Source: Refinitly

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

- Stocks: $1, 2, \ldots, m$
- Price relatives (market vector):

$$\mathbf{x}_t = (x_{t1}, \dots, x_{tm}) \in \mathcal{M} \subseteq \mathbb{R}^m_{\geq 0},$$
$$r_{ti} := \frac{(\text{end price of stock } i \text{ on day } t)}{(\mathbf{x}_{ti} := \mathbf{x}_{ti})}$$

$$x_{ti} := \frac{1}{(\text{start price of stock } i \text{ on day } t)}$$

Selected asset performance since Jan 3 high for S&P 500

Note: Data as of June 13 morning trading Source: Refinitly

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

- Stocks: $1, 2, \ldots, m$
- Price relatives (market vector):

$$\mathbf{x}_t = (x_{t1}, \dots, x_{tm}) \in \mathcal{M} \subseteq \mathbb{R}^m_{\geq 0},$$

 $x_{ti} := \frac{(\text{end price of stock } i \text{ on day } t)}{(\text{start price of stock } i \text{ on day } t)}$

• Portfolio: $\mathbf{b}(\mathbf{x}^{t-1}) \in \Delta_{m-1}$

Selected asset performance since Jan 3 high for S&P 500

Note: Data as of June 13 morning trading Source: Relinitly

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

- Stocks: $1, 2, \ldots, m$
- Price relatives (market vector):

$$\mathbf{x}_t = (x_{t1}, \dots, x_{tm}) \in \mathcal{M} \subseteq \mathbb{R}^m_{\geq 0},$$

 $x_{ti} := \frac{(\text{end price of stock } i \text{ on day } t)}{(\text{start price of stock } i \text{ on day } t)}$

- Portfolio: $\mathbf{b}(\mathbf{x}^{t-1}) \in \Delta_{m-1}$
- Cumulative wealth: starting with \$W₀,

Selected asset performance since Jan 3 high for S&P 500

Note: Data as of June 13 morning trading Source: Refinitiv

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

From Probability Assignment to Portfolio Selection

• By distributive law,

$$\mathsf{W}(\mathbf{x}^{T}) = \mathsf{W}_{0} \prod_{t=1}^{T} \langle \mathbf{b}(\mathbf{x}^{t-1}), \mathbf{x}_{t} \rangle = \mathsf{W}_{0} \sum_{y^{T} \in [m]^{T}} \left(\prod_{t=1}^{T} b(y_{t} | \mathbf{x}^{t-1}) \right) \mathbf{x}^{T}(y^{T}),$$

where $\mathbf{x}^T(y^T) := x_{1y_1} \dots x_{Ty_T}$ = (multiplicative gain of the extremal portfolio y^T)

From Probability Assignment to Portfolio Selection

• By distributive law,

$$\mathsf{W}(\mathbf{x}^T) = \mathsf{W}_0 \prod_{t=1}^T \langle \mathbf{b}(\mathbf{x}^{t-1}), \mathbf{x}_t \rangle = \mathsf{W}_0 \sum_{y^T \in [m]^T} \left(\prod_{t=1}^T b(y_t | \mathbf{x}^{t-1}) \right) \mathbf{x}^T(y^T),$$

where $\mathbf{x}^T(y^T) := x_{1y_1} \dots x_{Ty_T}$ = (multiplicative gain of the extremal portfolio y^T)

• A probability induced portfolio: for a probability $q(y^T)$, define

$$\mathsf{W}^q(\mathbf{x}^T) := \mathsf{W}_0 \sum_{y^T \in [m]^T} q(y^T) \mathbf{x}^T(y^T),$$

which is achieved by a causal bettor \mathbf{b}^q defined to satisfy

$$\mathsf{W}^{q}(\mathbf{x}^{t}) = \mathsf{W}^{q}(\mathbf{x}^{t-1}) \langle \mathbf{b}^{q}(\mathbf{x}^{t-1}), \mathbf{x}_{t} \rangle$$

Portfolio Selection \equiv Probability Assignment

Theorem

$$\sup_{p \in \mathcal{P}} \sup_{\mathbf{x}^T} \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^q(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}} \sup_{y^T} \frac{p(y^T)}{q(y^T)}$$

Portfolio Selection \equiv Probability Assignment

Theorem

$$\sup_{p \in \mathcal{P}} \sup_{\mathbf{x}^T} \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^q(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}} \sup_{y^T} \frac{p(y^T)}{q(y^T)}$$

Proof

$$\begin{split} \sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{x}^n)}{\mathsf{W}^q(\mathbf{x}^n)} &\geq \sup_{y^n \in [m]^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{e}_{y_1} \dots \mathbf{e}_{y_n})}{\mathsf{W}^q(\mathbf{e}_{y_1} \dots \mathbf{e}_{y_n})} = \sup_{y^n \in [m]^n} \sup_{p \in \mathcal{P}} \frac{p(y^n)}{q(y^n)} \\ \sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{x}^n)}{\mathsf{W}^q(\mathbf{x}^n)} &= \sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\sum_{y^n} p(y^n) \mathbf{x}(y^n)}{\sum_{y^n} q(y^n) \mathbf{x}(y^n)} \stackrel{(\star)}{\leq} \sup_{p \in \mathcal{P}} \sup_{y^n} \frac{p(y^n)}{q(y^n)} \end{split}$$

Lemma * (Cover, 2006, Lemma 16.7.1)
For
$$a_i, b_i \ge 0$$
, we have $\frac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i} \le \max_{j \in [n]} \frac{a_j}{b_j}$, where $\frac{0}{0} := 0$

Jon Ryu

• $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) \colon \theta \in \Delta_{m-1}\}$

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) \colon \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) \colon \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) : \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \ldots$

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) : \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) : \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{UP} := \mathbf{b}^{q_{KT}}$

$$\sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{\mathbf{x}^T} \log \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^{\text{UP}}(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{y^T} \log \frac{p(y^T)}{q_{\text{KT}}(y^T)}$$

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) : \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{UP} := \mathbf{b}^{q_{KT}}$

$$\sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{\mathbf{x}^T} \log \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^{\mathsf{UP}}(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{y^T} \log \frac{p(y^T)}{q_{\mathsf{KT}}(y^T)}$$

• Time complexity: $O(t^{m-1})$ at round t

- $\mathcal{P}_{i.i.d.} = \{i.i.d. \text{ categorical probabilities}\} = \{p_{\theta}(\cdot) : \theta \in \Delta_{m-1}\}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \ldots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{UP} := \mathbf{b}^{q_{KT}}$

$$\sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{\mathbf{x}^T} \log \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^{\mathsf{UP}}(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{y^T} \log \frac{p(y^T)}{q_{\mathsf{KT}}(y^T)}$$

- Time complexity: $O(t^{m-1})$ at round t
- Note: for horse race, UP is equivalent to the simple KT strategy

From Universal Gambling to Confidence Sequences

• A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $E[\mathbf{x}_t | \mathbf{x}^{t-1}] \leq \mathbb{1}$ for every t (and fair if "=")

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $E[\mathbf{x}_t | \mathbf{x}^{t-1}] \leq 1$ for every t (and fair if "=")

Proposition

If $(\mathbf{x}_t)_{t=1}^\infty$ is (sub)fair, then $(W_t)_{t=1}^\infty$ of any causal strategy is (super)martingale

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $E[\mathbf{x}_t | \mathbf{x}^{t-1}] \leq \mathbb{1}$ for every t (and fair if "=")

Proposition

If $(\mathbf{x}_t)_{t=1}^{\infty}$ is (sub)fair, then $(W_t)_{t=1}^{\infty}$ of any causal strategy is (super)martingale

Proof.

For every t, $\mathsf{E}[\mathsf{W}_t|\mathbf{x}^{t-1}] = \mathsf{W}_{t-1}\langle \mathbf{b}_t, \mathsf{E}[\mathbf{x}_t|\mathbf{x}^{t-1}] \rangle \leq \mathsf{W}_{t-1}\langle \mathbf{b}_t, \mathbb{1} \rangle = \mathsf{W}_{t-1}$

- Coin betting: $\mathbf{x}_t = (2Y_t, 2(1 Y_t)), Y_t \in \{0, 1\}$
 - fair if $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{2}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{2})$)

- Coin betting: $\mathbf{x}_t = (2Y_t, 2(1 Y_t)), Y_t \in \{0, 1\}$ • fair if $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{2}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{2})$)
- Two-horse race: $\mathbf{x}_t = (o_1 Y_t, o_2(1 Y_t)), Y_t \in \{0, 1\}$ • fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{o_1}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{o_1})$)

• Coin betting: $\mathbf{x}_t = (2Y_t, 2(1 - Y_t)), Y_t \in \{0, 1\}$ • fair if $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{2}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{2})$)

• Two-horse race:
$$\mathbf{x}_t = (o_1 Y_t, o_2(1 - Y_t)), Y_t \in \{0, 1\}$$

• fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{o_1}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{o_1})$)

- Continuous two-horse race: $\mathbf{x}_t = (o_1 Y_t, o_2(1 Y_t)), Y_t \in [0, 1]$
 - fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $E[Y_t|Y^{t-1}] = \frac{1}{o_1}$;
 - more like a structured stock market

Coin betting: x_t = (2Y_t, 2(1 − Y_t)), Y_t ∈ {0, 1}
 fair if E[Y_t|Y^{t−1}] = ½ (e.g., Y_t ~ i.i.d. Bern(½))

• Two-horse race:
$$\mathbf{x}_t = (o_1 Y_t, o_2(1 - Y_t)), Y_t \in \{0, 1\}$$

• fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $\mathbb{E}[Y_t|Y^{t-1}] = \frac{1}{o_1}$ (e.g., $Y_t \sim \text{i.i.d. Bern}(\frac{1}{o_1})$)

- Continuous two-horse race: $\mathbf{x}_t = (o_1 Y_t, o_2(1 Y_t)), Y_t \in [0, 1]$
 - fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $E[Y_t|Y^{t-1}] = \frac{1}{o_1}$;
 - more like a structured stock market

• Recall: Assume $\mathsf{E}[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$

- Recall: Assume $E[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$
- Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

$$\mathbf{x}_t = \left(\frac{Y_t}{m}, \frac{1 - Y_t}{1 - m}\right)$$

- Recall: Assume $E[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$
- Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

$$\mathbf{x}_t = \left(\frac{Y_t}{m}, \frac{1 - Y_t}{1 - m}\right)$$

- Recall: Assume $E[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$
- Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

$$\mathbf{x}_t = \left(\frac{Y_t}{m}, \frac{1 - Y_t}{1 - m}\right)$$

Proposition

• If $m = \mu$, any wealth process from CTHR(m) is martingale

- Recall: Assume $E[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$
- Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

$$\mathbf{x}_t = \left(\frac{Y_t}{m}, \frac{1 - Y_t}{1 - m}\right)$$

Proposition

- If $m = \mu$, any wealth process from CTHR(m) is martingale
- If $m \neq \mu$, there exists a causal betting strategy whose wealth process from CTHR(m) is strictly submartingale

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

• For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$
- Since $(W(Y^t; \mu))_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1 \delta$,

$$\sup_{t\geq 1}\frac{\mathsf{W}(Y^t;\mu)}{\mathsf{W}_0}<\frac{1}{\delta}$$

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$
- Since $(W(Y^t; \mu))_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1 \delta$,

$$\sup_{t \ge 1} \frac{\mathsf{W}(Y^t;\mu)}{\mathsf{W}_0} < \frac{1}{\delta}$$

• Assume this high-probability event happens (w.r.t. the randomness in $(Y_t)_{t=0}^{\infty}$)

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$
- Since $(\mathsf{W}(Y^t;\mu))_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$\sup_{t \ge 1} \frac{\mathsf{W}(Y^t;\mu)}{\mathsf{W}_0} < \frac{1}{\delta}$$

- Assume this high-probability event happens (w.r.t. the randomness in $(Y_t)_{t=0}^{\infty}$)
- Suppose we "play" CTHR(m) for each $m \in (0, 1)$ in parallel

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$
- Since $(W(Y^t; \mu))_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1 \delta$,

$$\sup_{t \ge 1} \frac{\mathsf{W}(Y^t;\mu)}{\mathsf{W}_0} < \frac{1}{\delta}$$

- Assume this high-probability event happens (w.r.t. the randomness in $(Y_t)_{t=0}^{\infty}$)
- Suppose we "play" $\mathsf{CTHR}(m)$ for each $m \in (0,1)$ in parallel
- At round t, if the cumulative wealth from CTHR(m) exceeds the threshold W_0/δ , i.e.,

$$\frac{\mathsf{W}(Y^t;m)}{\mathsf{W}_0} \ge \frac{1}{\delta},$$

then this means that m cannot be μ , and thus exclude m from the candidate list

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(W(Y^t;m))_{t=1}^{\infty}$
- Since $(W(Y^t; \mu))_{t=1}^{\infty}$ is martingale, by Ville's inequality, w.p. $\geq 1 \delta$,

$$\sup_{t \ge 1} \frac{\mathsf{W}(Y^t;\mu)}{\mathsf{W}_0} < \frac{1}{\delta}$$

- Assume this high-probability event happens (w.r.t. the randomness in $(Y_t)_{t=0}^{\infty}$)
- Suppose we "play" $\mathsf{CTHR}(m)$ for each $m \in (0,1)$ in parallel
- At round t, if the cumulative wealth from CTHR(m) exceeds the threshold W_0/δ , i.e.,

$$\frac{\mathsf{W}(Y^t;m)}{\mathsf{W}_0} \ge \frac{1}{\delta},$$

then this means that m cannot be μ , and thus exclude m from the candidate list

• If we collect all m whose corresponding wealth never exceeds W_0/δ by then, it forms a time-uniform confidence set with level $1 - \delta$

• Formally, if we define

$$C_t(Y^t;\delta) := \Big\{ m \in (0,1) \colon \sup_{1 \le i \le t} \frac{\mathsf{W}(\mathbf{x}^i;m)}{\mathsf{W}_0} < \frac{1}{\delta} \Big\},$$

then

$$\mathsf{P}\{\mu \in C_t(Y^t;\delta), \ \forall t \ge 1\} \ge 1 - \delta$$

• Formally, if we define

$$C_t(Y^t;\delta) := \Big\{ m \in (0,1) \colon \sup_{1 \le i \le t} \frac{\mathsf{W}(\mathbf{x}^i;m)}{\mathsf{W}_0} < \frac{1}{\delta} \Big\},$$

then

$$\mathsf{P}\{\mu \in C_t(Y^t; \delta), \ \forall t \ge 1\} \ge 1 - \delta$$

• Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from CTHR(m) for $m \neq \mu$

• Formally, if we define

$$C_t(Y^t;\delta) := \Big\{ m \in (0,1) \colon \sup_{1 \le i \le t} \frac{\mathsf{W}(\mathbf{x}^i;m)}{\mathsf{W}_0} < \frac{1}{\delta} \Big\},$$

then

$$\mathsf{P}\{\mu \in C_t(Y^t; \delta), \ \forall t \ge 1\} \ge 1 - \delta$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from CTHR(m) for $m \neq \mu$
- We can plug-in any (causal) strategies, so why shouldn't we try universal gambling strategies?

• Formally, if we define

$$C_t(Y^t;\delta) := \Big\{ m \in (0,1) \colon \sup_{1 \le i \le t} \frac{\mathsf{W}(\mathbf{x}^i;m)}{\mathsf{W}_0} < \frac{1}{\delta} \Big\},$$

then

$$\mathsf{P}\{\mu \in C_t(Y^t;\delta), \ \forall t \ge 1\} \ge 1 - \delta$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from CTHR(m) for $m \neq \mu$
- We can plug-in any (causal) strategies, so why shouldn't we try universal gambling strategies?
- Orabona and Jun (2021) empirically showed that applying Cover's UP gives tight confidence sequences

A Special Case: $\{0, 1\}$ -Valued Sequences

• CTHR(m) becomes the standard horse race THR(m) if $Y_t \in \{0, 1\}$

A Special Case: $\{0,1\}$ -Valued Sequences

- $\operatorname{CTHR}(m)$ becomes the standard horse race $\operatorname{THR}(m)$ if $Y_t \in \{0,1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors

A Special Case: $\{0,1\}$ -Valued Sequences

- CTHR(m) becomes the standard horse race THR(m) if $Y_t \in \{0, 1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors
- For THR(m), the KT strategy yields the cumulative wealth

$$\mathbf{W}^{\mathsf{KT}}(Y^t;m) = \mathbf{W}_0 \phi_t \Big(\sum_{i=1}^t Y_i; \frac{1}{m}, \frac{1}{1-m} \Big) q_{\mathsf{KT}}(Y^t),$$

where $\phi_t(x;o_1,o_2):=o_1^xo_2^{t-x}$ for $x\in[0,t]$ and $q_{\mathrm{KT}}(y^t)$ is the KT probability

A Special Case: $\{0,1\}$ -Valued Sequences

- CTHR(m) becomes the standard horse race THR(m) if $Y_t \in \{0, 1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors
- For THR(m), the KT strategy yields the cumulative wealth

$$\mathsf{W}^{\mathsf{KT}}(Y^t;m) = \mathsf{W}_0\phi_t\Big(\sum_{i=1}^t Y_i;\frac{1}{m},\frac{1}{1-m}\Big)q_{\mathsf{KT}}(Y^t),$$

where $\phi_t(x;o_1,o_2):=o_1^xo_2^{t-x}$ for $x\in[0,t]$ and $q_{\mathrm{KT}}(y^t)$ is the KT probability

Define

$$C^{\mathrm{KT}}_t(\boldsymbol{y}^t;\boldsymbol{\delta}) := \Big\{ \boldsymbol{m} \in [0,1] \colon \sup_{1 \leq i \leq t} \frac{\mathsf{W}^{\mathrm{KT}}(\boldsymbol{y}^i;\boldsymbol{m})}{\mathsf{W}_0} < \frac{1}{\boldsymbol{\delta}} \Big\}$$

Confidence Sequence from KT Betting

Theorem

 $(C^{\mathrm{KT}}_t(Y^t;\delta))_{t=1}^\infty$ is a time-uniform confidence interval with level $1-\delta$

¹The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

Confidence Sequence from KT Betting

Theorem

 $(C^{\mathrm{KT}}_t(Y^t;\delta))_{t=1}^\infty$ is a time-uniform confidence interval with level $1-\delta$

Proof.

- Apply Ville's inequality
- The set is an interval, since $m \mapsto \phi_t(x; \frac{1}{m}, \frac{1}{1-m})$ is log-convex

¹The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

Confidence Sequence from KT Betting

Theorem

 $(C_t^{\mathrm{KT}}(Y^t;\delta))_{t=1}^\infty$ is a time-uniform confidence interval with level $1-\delta$

Proof.

- Apply Ville's inequality
- The set is an interval, since $m\mapsto \phi_t(x;\frac{1}{m},\frac{1}{1-m})$ is log-convex
- Note: the size of the interval behaves as $\sqrt{\frac{2}{t}\log\frac{1}{\delta} + \frac{1}{t}\log t + o(1)}$ for $t \gg 1$, which is comparable to $\sqrt{\frac{2}{t}\log\frac{1}{\delta}}$ from the standard Hoeffding¹

¹The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

• One may still employ the KT strategy, but strictly suboptimal

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
- Q. Can there be a conceptually simpler way to approximate Cover's UP with O(1) complexity per round?

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
- Q. Can there be a conceptually simpler way to approximate Cover's UP with O(1) complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
- Q. Can there be a conceptually simpler way to approximate Cover's UP with O(1) complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)
 - Recall that Cover's UP is defined as a mixture of wealths of CRPs

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a log-wealth regret analysis
- Q. Can there be a conceptually simpler way to approximate Cover's UP with O(1) complexity per round?
- An alternative approach (Ryu and Bhatt, 2022)
 - Recall that Cover's UP is defined as a mixture of wealths of CRPs
 - Consider a tight lower bound of the CRP wealth and take a mixture over the lower bounds

• Let $\bar{a} := 1 - a$ for any $a \in \mathbb{R}$

- Let $\bar{a} := 1 a$ for any $a \in \mathbb{R}$
- For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

- Let $\bar{a} := 1 a$ for any $a \in \mathbb{R}$
- For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1)) For any $n \in \mathbb{N}$ and $m \in (0, 1)$, we have

$$\log\left(b\frac{y}{m} + \bar{b}\frac{\bar{y}}{\bar{m}}\right) \ge \sum_{k=1}^{2n-1} \frac{1}{k} \left(1 - \frac{\bar{b}}{\bar{m}}\right)^k \left\{ \left(1 - \frac{y}{m}\right)^{2n} - \left(1 - \frac{y}{m}\right)^k \right\} + \left(1 - \frac{y}{m}\right)^{2n} \log\frac{\bar{b}}{\bar{m}}$$

if $b \in [m, 1)$ and $y \ge 0$

- Let $\bar{a} := 1 a$ for any $a \in \mathbb{R}$
- For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1)) For any $n\in\mathbb{N}$ and $m\in(0,1),$ we have

$$\log\left(b\frac{y}{m} + \bar{b}\frac{\bar{y}}{\bar{m}}\right) \ge \log\phi_n\left(\frac{\bar{b}}{\bar{m}}; \left(\left(1 - \frac{y}{m}\right)^{2n} - \left(1 - \frac{y}{m}\right)^k\right)_{k=1}^{2n-1}, \left(1 - \frac{y}{m}\right)^{2n}\right)$$

 $\text{ if } b \in [m,1) \text{ and } y \geq 0 \text{, where }$

$$\phi_n(x; \boldsymbol{\rho}, \eta) := \exp\left(\sum_{k=1}^{2n-1} \frac{(1-x)^k}{k} \rho_k + \eta \log x\right)$$

• Can view $\phi_n(x; \boldsymbol{\rho}, \eta)$ as an unnormalized exponential-family distribution

- Let $\bar{a} := 1 a$ for any $a \in \mathbb{R}$
- For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1)) For any $n \in \mathbb{N}$ and $m \in (0, 1)$, we have

$$\log\left(b\frac{y}{m} + \bar{b}\frac{\bar{y}}{\bar{m}}\right) \ge \log\phi_n\left(\frac{\bar{b}}{\bar{m}}; \left(\left(1 - \frac{y}{m}\right)^{2n} - \left(1 - \frac{y}{m}\right)^k\right)_{k=1}^{2n-1}, \left(1 - \frac{y}{m}\right)^{2n}\right)$$

 $\text{ if } b \in [m,1) \text{ and } y \geq 0 \text{, where }$

$$\phi_n(x;oldsymbol{
ho},oldsymbol{\eta}):= \exp\Bigl(\sum_{k=1}^{2n-1}rac{(1-x)^k}{k}
ho_k+oldsymbol{\eta}\log x\Bigr)$$

- Can view $\phi_n(x; \boldsymbol{\rho}, \eta)$ as an unnormalized exponential-family distribution
- Lower-bound the logarithm by moments of y, i.e., $(1, y, \dots, y^{2n})$

Jon Ryu

Key Lemma for the Proof

Lemma (Generalization of (Fan et al., 2015, Lemma 4.1)) For an integer $\ell \ge 1$, if we define

$$f_{\ell}(t) := \begin{cases} \left(\log(1+t) - \sum_{k=1}^{\ell-1} (-1)^{k+1} \frac{t^k}{k}\right) \middle/ \left((-1)^{\ell} \frac{t^{\ell}}{\ell}\right) & \text{if } t > -1 \text{ and } t \neq 0, \\ -1 & \text{if } t = 0, \end{cases}$$

then $t\mapsto f_\ell(t)$ is continuous and strictly increasing over $(-1,\infty)$

• Note: Fan et al. (2015) considered $\ell = 2$, i.e.,

$$f_2(t) = \begin{cases} \frac{\log(1+t) - t}{t^2/2} & \text{if } t > -1 \text{ and } t \neq 0, \\ -1 & \text{if } t = 0 \end{cases}$$

A Lower Bound on the Cumulative Wealth of CRP

• Since it is easy to check $\phi_n(x; \rho, \eta)\phi_n(x; \rho', \eta') = \phi_n(x; \rho + \rho, \eta + \eta')$,

Lemma

For any $n \in \mathbb{N}, m \in (0,1), b \in [0,1],$ and $y^t \in [0,1]^t,$ we have

$$\log \frac{\mathsf{W}_t^b(y^t;m)}{\mathsf{W}_0} \geq \log \phi_n\Big(\frac{\bar{b}}{\bar{m}}; \boldsymbol{\rho}_n(y^t;m), \eta_n(y^t;m)\Big)$$

if m < b < 1, where $\eta_n(y^t;m) := \sum_{i=1}^t {(1-\frac{y_i}{m})^{2n}}$ and

$$(\boldsymbol{\rho}_n(y^t;m))_k := \sum_{i=1}^t \left\{ \left(1 - \frac{y_i}{m}\right)^{2n} - \left(1 - \frac{y_i}{m}\right)^k \right\} \text{ for } k = 1, \dots, 2n-1$$

- Lower-bound the logarithm by moments of y^t , i.e., $(\sum_{i=1}^t y_i^j)_{j=1}^{2n}$
- Complexity from O(t) to O(n)

• Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; \rho, \eta)$

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; {oldsymbol
 ho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; {oldsymbol
 ho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- For example, with the uniform prior, the mixture of wealth lower bounds becomes

 $\bar{\boldsymbol{m}}Z_n(\boldsymbol{\rho}_n(\boldsymbol{y}^t;\boldsymbol{m}),\eta_n(\boldsymbol{y}^t;\boldsymbol{m})) + \boldsymbol{m}Z_n(\boldsymbol{\rho}_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}}),\eta_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}})),$

where $Z_n(\boldsymbol{\rho}, \eta) := \int_0^1 \phi_n(x; \boldsymbol{\rho}, \eta) \, \mathrm{d}x$

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- For example, with the uniform prior, the mixture of wealth lower bounds becomes

 $\bar{\boldsymbol{m}}Z_n(\boldsymbol{\rho}_n(\boldsymbol{y}^t;\boldsymbol{m}),\eta_n(\boldsymbol{y}^t;\boldsymbol{m})) + \boldsymbol{m}Z_n(\boldsymbol{\rho}_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}}),\eta_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}})),$

where $Z_n(\boldsymbol{\rho}, \eta) := \int_0^1 \phi_n(x; \boldsymbol{\rho}, \eta) \, \mathrm{d}x$

• We can construct a time-uniform confidence interval using this "mixture of wealth lower bounds"!

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- · For example, with the uniform prior, the mixture of wealth lower bounds becomes

 $\bar{\boldsymbol{m}}Z_n(\boldsymbol{\rho}_n(\boldsymbol{y}^t;\boldsymbol{m}),\eta_n(\boldsymbol{y}^t;\boldsymbol{m})) + \boldsymbol{m}Z_n(\boldsymbol{\rho}_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}}),\eta_n(\bar{\boldsymbol{y}}^t;\bar{\boldsymbol{m}})),$

where $Z_n(\boldsymbol{\rho}, \eta) := \int_0^1 \phi_n(x; \boldsymbol{\rho}, \eta) \, \mathrm{d}x$

- We can construct a time-uniform confidence interval using this "mixture of wealth lower bounds"!
- We call this LBUP(*n*), where *n* is the approximation order

Caveats

• Computational bottleneck: computing the normalization constant $Z_n(\rho, \eta)$ of the form

$$\int_0^1 x^\eta \exp\left(\sum_{k=0}^{2n-1} a_k x^k\right) \mathrm{d}x$$

- Hence, O(1) per round in principle, but may take longer than running exact UP due to numerical integration steps
- Larger n leads to better approximation, but with increased numerical instability; n = 2 or n = 3 empirically work well
- Bad approximation in a small sample regime
 - Hybrid UP: run UP for the first few samples and switch to LBUP

Evolution of Wealth Processes

• The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Bern(0.25) process

Evolution of Wealth Processes

• The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Beta(1,3) process

Evolution of Wealth Processes

• The horizontal lines indicate an example threshold $\ln \frac{1}{\delta} \approx 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Beta(10,30) process

- Confidence sequences with level 0.95 (i.e., $\delta=0.05)$
- CB: betting strategy from another gambling construction
- HR: KT strategy
- UP: exact Cover's UP strategy
- LBUP: proposed lower-bound approach
- HybridUP: run exact UP for the first few steps and switch to LBUP
- PRECiSE (Orabona and Jun, 2021)

Figure: With i.i.d. Bern(0.25) processes

Figure: With i.i.d. Beta(1,3) processes

Figure: With i.i.d. Beta(10,30) processes

Take-Home Messages

- Confidence sequence is an important tool in modern data science
- Gambling with respect to probability induced strategies \equiv probability assignment
- Confidence sequences from universal portfolios are very tight with small samples, but suffers high complexity
- They can be "efficiently" approximated by a mixture of lower bounds approach!

Take-Home Messages

- Confidence sequence is an important tool in modern data science
- Gambling with respect to probability induced strategies \equiv probability assignment
- Confidence sequences from universal portfolios are very tight with small samples, but suffers high complexity
- They can be "efficiently" approximated by a mixture of lower bounds approach!
- Q. Can we construct a time-uniform confidence set for bounded vectors? Yes!
- **Q.** Can there be a gambling other than CTHR(m) that corresponds to some other statistics applications?

References I

- Thomas M Cover. Universal portfolios. Math. Financ., 1(1):1-29, 1991.
- Thomas M Cover. Elements of information theory. John Wiley & Sons, 2006.
- Thomas M Cover and Erik Ordentlich. Universal portfolios with side information. *IEEE Trans. Inf. Theory*, 42(2):348-363, 1996.
- Donald A Darling and Herbert Robbins. Confidence sequences for mean, variance, and median. *Proc. Natl. Acad. Sci. U. S. A.*, 58(1):66, 1967.
- Xiequan Fan, Ion Grama, and Quansheng Liu. Exponential inequalities for martingales with applications. *Electron. J. Probab.*, 20:1–22, 2015.
- Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparametric, nonasymptotic confidence sequences. *Ann. Statist.*, 49(2):1055–1080, 2021.
- Kwang-Sung Jun and Francesco Orabona. Parameter-free online convex optimization with sub-exponential noise. In *Conf. Learn. Theory*, pages 1802–1823. PMLR, 2019.
- Raphail Krichevsky and Victor Trofimov. The performance of universal encoding. *IEEE Trans. Inf. Theory*, 27(2):199-207, 1981.

References II

Tze Leung Lai. On confidence sequences. Ann. Statist., 4(2):265–280, 1976.

- Francesco Orabona and Kwang-Sung Jun. Tight concentrations and confidence sequences from the regret of universal portfolio. *arXiv preprint arXiv:2110.14099*, 2021.
- Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter Koolen. Admissible anytime-valid sequential inference must rely on nonnegative martingales. *arXiv preprint arXiv:2009.03167*, September 2020.
- J Jon Ryu and Alankrita Bhatt. On confidence sequences for bounded random processes via universal gambling strategies. *arXiv preprint arXiv:2207.12382*, 2022.
- Jean Ville. Etude critique de la notion de collectif. Bull. Amer. Math. Soc, 45(11):824, 1939.
- Ian Waudby-Smith and Aaditya Ramdas. Confidence sequences for sampling without replacement. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Adv. Neural Inf. Proc. Syst.*, volume 33, pages 20204–20214. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/ e96c7de8f6390b1e6c71556e4e0a4959-Paper.pdf.

References III

- Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting. *arXiv preprint arXiv:2010.09686*, 2020b.
- Qun Xie and Andrew R Barron. Asymptotic minimax regret for data compression, gambling, and prediction. *IEEE Trans. Inf. Theory*, 46(2):431–445, 2000.