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Parameter Estimation

• Let Y1, Y2, . . . ∼ i.i.d. p(x) over [0, 1]

• Suppose Ep(y)[Y ] = µ

• Problem: Estimate µ based on Y t := (Y1, . . . , Yt)

• An (easy) answer: the empirical mean µ̂t :=
1
t

∑t
i=1 Yi
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• But how accurate is it?

• For reliable inference, we need to quantify confidence
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Parameter Estimation with Confidence

• We can use concentration inequalities!
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Parameter Estimation with Confidence

• We can use concentration inequalities!
• If we knew Var(Y ) a priori, Chebyshev gives

P(|µ− µ̂t | > ε) ≤ Var(Y )

tε2

which is equivalent to

µ ∈
(
µ̂t −

√
1

t

Var(Y )

δ
, µ̂t +

√
1

t

Var(Y )

δ

)
with prob. ≥ 1− δ
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Parameter Estimation with Confidence

• We can use concentration inequalities!
• Since (Yt)

∞
t=1 is bounded, Hoeffding gives

P(|µ− µ̂t | > ε) ≤ 2e−2ε2t,

which is equivalent to

µ ∈
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Confidence Sets

• A set Ct(δ) is a confidence set for µ at level 1− δ, if Ct(δ) is a function of Y t and

P(µ ∈ Ct(δ)) ≥ 1− δ

• For example,

• Chebyshev: Ct(δ) = (µ̂t −
√

1
t

Var(Y )
δ

, µ̂t +
√

1
t

Var(Y )
δ

)

• Hoeffding: Ct(δ) =
(
µ̂t −

√
1
2t

log 2
δ
, µ̂t +

√
1
2t

log 2
δ

)
• Now, suppose we wish to decide to keep or stop sampling Yt to estimate µ given

confidence level on the fly (sequentially)

• For such online data processing, we need to construct a sequence of confidence
intervals that is valid at any time
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Time-Uniform Confidence Sets

• Time-uniform confidence sets (a.k.a. confidence sequence)

P(µ ∈ Ct, ∀t ≥ 1) ≥ 1− δ

• Contrast with the standard definition of confidence intervals:

P(µ ∈ Ct) ≥ 1− δ, ∀t ≥ 1

• Originally studied by Darling and Robbins (1967); Lai (1976), and recently resurrected
by some statisticians (Ramdas et al., 2020; Waudby-Smith and Ramdas, 2020a,b;
Howard et al., 2021) and computer scientists (Jun and Orabona, 2019; Orabona and Jun,
2021)
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Recall: Martingales

• A canonical probabilistic model for gambling

• A random process (Wt)
∞
t=0 is said to be

• martingale if for any t ≥ 1,

E[Wt |W1, . . . ,Wt−1] = Wt−1

i.e., given history, the expected wealth does not change;

• supermartingale if for any t ≥ 1,

E[Wt |W1, . . . ,Wt−1] ≤ Wt−1

i.e., given history, the expected wealth always does not increase
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A Tool from Martingale Theory

• Many standard concentration inequalities (such as Chebyshev and Hoeffding) rely on

Markov’s inequality
For a nonnegative random variable W ,

P
( W

E[W ]
≥ 1

δ

)
≤ δ

• In martingale theory, there is a time-uniform counterpart:

Ville’s inequality (Ville, 1939)
For a nonnegative supermartingale sequence (Wt)

∞
t=0 with W0 > 0,

P
{

sup
t≥1

Wt

W0
≥ 1

δ

}
≤ δ
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Supermartingales from Gambling

• A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

• Wait, what is gambling?

• As a slight detour, let’s review canonical gambling problems and some universal
gambling strategies
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Universal Gambling
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Coin Betting

• Coin tosses y1, y2, . . . ∈ {0, 1}

• At each round t, a gambler distributes its wealth $Wt−1

according to (qt, 1− qt)

• For each $1, earn $1 if you hit, lose $1 otherwise

• Causal strategy: qt := q(1|yt−1) ∈ [0, 1]

• The recursive equation:

Wt = Wt−12q
1{yt=1}
t (1− qt)

1{yt=0} = Wt−12q(yt |yt−1)

• Cumulative wealth: starting with $W0,

WT = W0

T∏
t=1

2q(yt |yt−1) = W02
T q(yT ),

where q(yT ) :=
∏T

t=1 q(yt|yt−1)
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Universality and Minimax Optimality

• Let Wt := Wq(yt) for a betting strategy (q(·|yt−1))∞t=1

• For some P = {reference strategies p}, track the best performance of P in hindsight

If o(T ), the gambler q is said to be universal w.r.t. P

• The best strategy is called minimax optimal

min
q

max
p∈P

max
yT

log Wp(yT )

Wq(yT )
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• The best strategy is called minimax optimal

min
q

max
p∈P

max
yT

log Wp(yT )

Wq(yT )
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Coin Betting ≡ Probability Assignment

• Note:
Wp(yT )

Wq(yT )
=

W02
T p(yT )

W02T q(yT )
=

p(yT )

q(yT )
by definition

• Binary prediction under log loss

• At each round t, a learner assigns probability q(·|yt−1) over {0, 1}
• After observing yt ∈ {0, 1}, suffer loss log 1

q(yt|yt−1)

• The cumulative regret w.r.t. a reference probability p(yt) is

T∑
t=1

log 1

q(yt|yt−1)
−

T∑
t=1

log 1

p(yt|yt−1)
= log p(yT )

q(yT )

∴ coin betting ≡ binary prediction under log loss (≡ lossless binary compression)

∴ universal compression → universal betting!
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Example: Constant Bettors

• P = {pθ(·) : θ ∈ [0, 1]}, where pθ(1|yt−1) = θ

• Cumulative wealth:

Wθ(yT ) := W02
T pθ(y

T )

,

where pθ(yT ) is the “probability” under yT ∼ i.i.d. Bern(θ)
• Fact: pθ∗ is optimal if yT ∼ i.i.d. Bern(θ∗) (a.k.a. Kelly betting)

• Krichevsky–Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

qKT(1|yt−1) :=
1

t

( t−1∑
i=1

yi +
1

2

)
• Asymptotically minimax optimal (Xie and Barron, 2000)

max
θ∈[0,1]

max
yT

log pθ(y
T )

qKT(yT )
=

1

2
logT +

1

2
log π

2
+ o(1)
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Mixture Probability

• The KT probability qKT(·|yt−1) is induced by a mixture probability, i.e.,

qKT(y
T ) ≡

∫ 1

0

pθ(y
T )dπ(θ)

for π(θ) = Beta(θ| 12 ,
1
2 )

• In other words, KT strategy attains the mixture wealth,

WKT(yT ) = W02
T qKT(y

T ) =

∫ 1

0

Wθ(yT )dπ(θ)

• So, mixture is nice!
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Horse Race

• Horses: 1, 2, . . . ,m

• Odds: o1, o2, . . . , om
• Outcome: yt ∈ [m]

• Bets: (q(1|yt−1), . . . , q(m|yt−1)) ∈ ∆m−1

• Instantaneous gain: oyt
q(yt|yt−1)

• Cumulative wealth:

Wq(yT ) = W0

T∏
t=1

oyt
q(yt |yt−1)

= W0

∏
z∈[m]

o
∑T

t=1 1{yt=z}
z q(yT )

• Regret: log Wp(yT )

Wq(yT )
= log p(yT )

q(yT )
⇒ equivalent to m-ary prediction under log loss!

• KT strategy: qKT(y
T ) :=

∫
∆m−1

pθ(y
T )dπ(θ), where π(θ) = Dir(θ| 12 , . . . ,

1
2 )
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Stock Investment

• Stocks: 1, 2, . . . ,m

• Price relatives (market vector):

xt = (xt1, . . . , xtm) ∈ M ⊆ Rm
≥0,

xti :=
(end price of stock i on day t)
(start price of stock i on day t)

• Portfolio: b(xt−1) ∈ ∆m−1

• Cumulative wealth: starting with $W0,

W(xT ) = W0

T∏
t=1

〈b(xt−1), xt〉

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI
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Special Cases
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From Probability Assignment to Portfolio Selection

• By distributive law,

W(xT ) = W0

T∏
t=1

〈b(xt−1), xt〉 = W0

∑
yT∈[m]T

( T∏
t=1

b(yt |xt−1)
)

xT (yT ),

where xT (yT ) := x1y1 . . . xTyT
= (multiplicative gain of the extremal portfolio yT )

• A probability induced portfolio: for a probability q(yT ), define

Wq(xT ) := W0

∑
yT∈[m]T

q(yT )xT (yT ),

which is achieved by a causal bettor bq defined to satisfy

Wq(xt) = Wq(xt−1)〈bq(xt−1), xt〉
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Portfolio Selection ≡ Probability Assignment

Theorem

sup
p∈P

sup
xT

Wp(xT )

Wq(xT )
= sup

p∈P
sup
yT

p(yT )

q(yT )

Proof

sup
xn

sup
p∈P

Wp(xn)

Wq(xn)
≥ sup

yn∈[m]n
sup
p∈P

Wp(ey1
. . . eyn

)

Wq(ey1
. . . eyn

)
= sup

yn∈[m]n
sup
p∈P

p(yn)

q(yn)

sup
xn

sup
p∈P

Wp(xn)

Wq(xn)
= sup

xn
sup
p∈P

∑
yn p(yn)x(yn)∑
yn q(yn)x(yn)

(?)

≤ sup
p∈P

sup
yn

p(yn)

q(yn)

Lemma ? (Cover, 2006, Lemma 16.7.1)

For ai, bi ≥ 0, we have
∑n

i=1 ai∑n
i=1 bi

≤ maxj∈[n]
aj

bj
, where 0

0 := 0
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Example: Constant Rebalanced Portfolios

• Pi.i.d. = {i.i.d. categorical probabilities} = {pθ(·) : θ ∈ ∆m−1}

• For each θ ∈ ∆m−1, bθ := bpθ is called a constant rebalanced portfolio (CRP)

• Fact: for an i.i.d. market (xt)
∞
t=1, the log-optimal portfolio is a CRP for some θ∗

• Example: Consider a market vector sequence (1, 1
2 ), (1, 2), (1,

1
2 ), . . .

• To track the best performance of CRPs, we can plug-in the KT probability!

• Cover’s universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): bUP := bqKT

sup
p∈Pi.i.d.

sup
xT

log Wp(xT )

WUP(xT )
= sup

p∈Pi.i.d.

sup
yT

log p(yT )

qKT(yT )

• Time complexity: O(tm−1) at round t

• Note: for horse race, UP is equivalent to the simple KT strategy
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From Universal Gambling to Confidence Sequences
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Supermartingales from Gambling

• A (super)martingale naturally arises as a wealth process from a (sub)fair gambling

• We call a gambling subfair, if E[xt|xt−1] ≤ 1 for every t (and fair if “=”)

Proposition
If (xt)

∞
t=1 is (sub)fair, then (Wt)

∞
t=1 of any causal strategy is (super)martingale

Proof.
For every t, E[Wt|xt−1] = Wt−1〈bt, E[xt|xt−1]〉 ≤ Wt−1〈bt,1〉 = Wt−1
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Examples

• Coin betting: xt = (2Yt, 2(1− Yt)), Yt ∈ {0, 1}
• fair if E[Yt|Y t−1] = 1

2
(e.g., Yt ∼ i.i.d. Bern( 1

2
))

• Two-horse race: xt = (o1Yt, o2(1− Yt)), Yt ∈ {0, 1}
• fair if 1

o1
+ 1

o2
= 1 and E[Yt|Y t−1] = 1

o1
(e.g., Yt ∼ i.i.d. Bern( 1

o1
))

• Continuous two-horse race: xt = (o1Yt, o2(1− Yt)), Yt ∈ [0, 1]
• fair if 1

o1
+ 1

o2
= 1 and E[Yt|Y t−1] = 1

o1
;

• more like a structured stock market
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Martingales from Continuous Two-Horse Race

• Recall: Assume E[Yt|Y t−1] ≡ µ for some µ ∈ (0, 1)

• Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

xt =
(Yt

m
,
1− Yt

1−m

)

Proposition

• If m = µ, any wealth process from CTHR(m) is martingale

• If m 6= µ, there exists a causal betting strategy whose wealth process from CTHR(m)
is strictly submartingale
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is strictly submartingale
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High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

• For CTHR(m), we play a strategy (b(Y t−1;m))∞t=1 and get (W(Y t;m))∞t=1

• Since (W(Y t;µ))∞t=1 is martingale, by Ville’s inequality, w.p. ≥ 1− δ,

sup
t≥1

W(Y t;µ)

W0
<

1

δ

• Assume this high-probability event happens (w.r.t. the randomness in (Yt)
∞
t=0)

• Suppose we “play” CTHR(m) for each m ∈ (0, 1) in parallel

• At round t, if the cumulative wealth from CTHR(m) exceeds the threshold W0/δ, i.e.,

W(Y t;m)

W0
≥ 1

δ
,

then this means that m cannot be µ, and thus exclude m from the candidate list

• If we collect all m whose corresponding wealth never exceeds W0/δ by then, it forms a
time-uniform confidence set with level 1− δ
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Confidence Sequence from CTHR(m)

• Formally, if we define

Ct(Y
t; δ) :=

{
m ∈ (0, 1) : sup

1≤i≤t

W(xi;m)

W0
<

1

δ

}
,

then
P{µ ∈ Ct(Y

t; δ), ∀t ≥ 1} ≥ 1− δ

• Intuitively, a better betting strategy gives a tighter confidence sequence, by growing
wealth faster from CTHR(m) for m 6= µ

• We can plug-in any (causal) strategies, so why shouldn’t we try universal gambling
strategies?

• Orabona and Jun (2021) empirically showed that applying Cover’s UP gives tight
confidence sequences
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A Special Case: {0, 1}-Valued Sequences

• CTHR(m) becomes the standard horse race THR(m) if Yt ∈ {0, 1}

• Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality
against constant bettors

• For THR(m), the KT strategy yields the cumulative wealth

WKT(Y t;m) = W0φt

( t∑
i=1

Yi;
1

m
,

1

1−m

)
qKT(Y

t),

where φt(x; o1, o2) := ox1o
t−x
2 for x ∈ [0, t] and qKT(y

t) is the KT probability

• Define

CKT
t (yt; δ) :=

{
m ∈ [0, 1] : sup

1≤i≤t

WKT(yi;m)

W0
<

1

δ

}
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Confidence Sequence from KT Betting

Theorem
(CKT

t (Y t; δ))∞t=1 is a time-uniform confidence interval with level 1− δ

Proof.
• Apply Ville’s inequality
• The set is an interval, since m 7→ φt(x;

1
m , 1

1−m ) is log-convex

• Note: the size of the interval behaves as
√

2
t log 1

δ + 1
t log t+ o(1) for t � 1, which is

comparable to
√

2
t log 1

δ from the standard Hoeffding1

1The optimal order is 1
t

log log t, which is implied by the law of iterated logarithm (LIL)
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A General Case: [0, 1]-Valued Sequences

• One may still employ the KT strategy, but strictly suboptimal

• Cover’s UP for CTHR(m) gives empirically very tight confidence sequence in
general (Orabona and Jun, 2021); but O(t) complexity at round t

• Orabona and Jun (2021) proposed an algorithm that approximates Cover’s UP based on
a log-wealth regret analysis

Q. Can there be a conceptually simpler way to approximate Cover’s UP with O(1)
complexity per round?

• An alternative approach (Ryu and Bhatt, 2022)

• Recall that Cover’s UP is defined as a mixture of wealths of CRPs

• Consider a tight lower bound of the CRP wealth and take a mixture over the lower bounds
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A Lower Bound on the Wealth of CRP

• Let ā := 1− a for any a ∈ R

• For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

• Can view φn(x;ρ, η) as an unnormalized exponential-family distribution

• Lower-bound the logarithm by moments of y, i.e., (1, y, . . . , y2n)
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A Lower Bound on the Wealth of CRP

• Let ā := 1− a for any a ∈ R
• For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1))

For any n ∈ N and m ∈ (0, 1), we have

log
(
b
y

m
+ b̄

ȳ

m̄

)
≥

2n−1∑
k=1

1

k

(
1− b̄

m̄

)k{(
1− y

m

)2n

−
(
1− y

m

)k}
+

(
1− y

m

)2n

log b̄

m̄

if b ∈ [m, 1) and y ≥ 0

• Can view φn(x;ρ, η) as an unnormalized exponential-family distribution

• Lower-bound the logarithm by moments of y, i.e., (1, y, . . . , y2n)
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For any n ∈ N and m ∈ (0, 1), we have

log
(
b
y

m
+ b̄

ȳ

m̄

)
≥ logφn

( b̄

m̄
;
((

1− y

m

)2n

−
(
1− y

m

)k)2n−1

k=1
,
(
1− y

m

)2n)
if b ∈ [m, 1) and y ≥ 0, where

φn(x;ρ, η) := exp
(2n−1∑

k=1

(1− x)k

k
ρk + η logx

)
• Can view φn(x;ρ, η) as an unnormalized exponential-family distribution

• Lower-bound the logarithm by moments of y, i.e., (1, y, . . . , y2n)
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Key Lemma for the Proof

Lemma (Generalization of (Fan et al., 2015, Lemma 4.1))
For an integer ` ≥ 1, if we define

f`(t) :=


(

log(1 + t)−
`−1∑
k=1

(−1)k+1 t
k

k

)/(
(−1)`

t`

`

)
if t > −1 and t 6= 0,

−1 if t = 0,

then t 7→ f`(t) is continuous and strictly increasing over (−1,∞)

• Note: Fan et al. (2015) considered ` = 2, i.e.,

f2(t) =


log(1 + t)− t

t2/2
if t > −1 and t 6= 0,

−1 if t = 0
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A Lower Bound on the Cumulative Wealth of CRP

• Since it is easy to check φn(x;ρ, η)φn(x;ρ
′, η′) = φn(x;ρ+ ρ, η + η′),

Lemma
For any n ∈ N, m ∈ (0, 1), b ∈ [0, 1], and yt ∈ [0, 1]t, we have

log Wb
t(y

t;m)

W0
≥ logφn

( b̄

m̄
;ρn(y

t;m), ηn(y
t;m)

)
if m < b < 1, where ηn(yt;m) :=

∑t
i=1 (1−

yi

m )2n and

(ρn(y
t;m))k :=

t∑
i=1

{(
1− yi

m

)2n

−
(
1− yi

m

)k}
for k = 1, . . . , 2n− 1

• Lower-bound the logarithm by moments of yt, i.e., (
∑t

i=1 y
j
i )

2n
j=1

• Complexity from O(t) to O(n)
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A Mixture of Lower Bounds Approach

• Take a mixture of lower bounds with the conjugate prior of φn(x;ρ, η)

• In general, this prior is different from the Beta priors used for universal strategies

• For a special case, it subsumes the uniform distribution

• For example, with the uniform prior, the mixture of wealth lower bounds becomes

m̄Zn(ρn(y
t;m), ηn(y

t;m)) +mZn(ρn(ȳ
t; m̄), ηn(ȳ

t; m̄)),

where Zn(ρ, η) :=
∫ 1

0
φn(x;ρ, η)dx

• We can construct a time-uniform confidence interval using this “mixture of wealth
lower bounds”!

• We call this LBUP(n), where n is the approximation order
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t; m̄)),

where Zn(ρ, η) :=
∫ 1

0
φn(x;ρ, η)dx

• We can construct a time-uniform confidence interval using this “mixture of wealth
lower bounds”!

• We call this LBUP(n), where n is the approximation order

Jon Ryu Time-Uniform Confidence Sets from Universal Gambling January 6, 2023 33 / 45



A Mixture of Lower Bounds Approach

• Take a mixture of lower bounds with the conjugate prior of φn(x;ρ, η)

• In general, this prior is different from the Beta priors used for universal strategies

• For a special case, it subsumes the uniform distribution

• For example, with the uniform prior, the mixture of wealth lower bounds becomes

m̄Zn(ρn(y
t;m), ηn(y

t;m)) +mZn(ρn(ȳ
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Caveats

• Computational bottleneck: computing the normalization constant Zn(ρ, η) of the form∫ 1

0

xη exp
(2n−1∑

k=0

akx
k
)

dx

• Hence, O(1) per round in principle, but may take longer than running exact UP due to
numerical integration steps

• Larger n leads to better approximation, but with increased numerical instability; n = 2
or n = 3 empirically work well

• Bad approximation in a small sample regime
• Hybrid UP: run UP for the first few samples and switch to LBUP
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Evolution of Wealth Processes

• The horizontal lines indicate an example threshold ln 1
δ ≈ 2.996 for δ = 0.05
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Figure: An i.i.d. Bern(0.25) process
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Figure: An i.i.d. Beta(1,3) process
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Evolution of Wealth Processes

• The horizontal lines indicate an example threshold ln 1
δ ≈ 2.996 for δ = 0.05
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Figure: An i.i.d. Beta(10,30) process
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Experiments

• Confidence sequences with level 0.95 (i.e., δ = 0.05)

• CB: betting strategy from another gambling construction

• HR: KT strategy

• UP: exact Cover’s UP strategy

• LBUP: proposed lower-bound approach

• HybridUP: run exact UP for the first few steps and switch to LBUP

• PRECiSE (Orabona and Jun, 2021)
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Experiments
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Figure: With i.i.d. Bern(0.25) processes
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Take-Home Messages

• Confidence sequence is an important tool in modern data science

• Gambling with respect to probability induced strategies ≡ probability assignment

• Confidence sequences from universal portfolios are very tight with small samples, but
suffers high complexity

• They can be “efficiently” approximated by a mixture of lower bounds approach!

Q. Can we construct a time-uniform confidence set for bounded vectors? Yes!

Q. Can there be a gambling other than CTHR(m) that corresponds to some other
statistics applications?
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