From Information Theory to Machine Learning Algorithms: A Few Vignettes

> Jongha (Jon) Ryu UC San Diego

Ph.D. final defense

June 3, 2022

Information theory studies how to communicate over or compress distributions

- Information theory studies how to communicate over or compress distributions
 - fundamental limits (achievability and converse);

- Information theory studies how to communicate over or compress distributions
 - fundamental limits (achievability and converse);
 - coding schemes;

- Information theory studies how to communicate over or compress distributions
 - fundamental limits (achievability and converse);
 - coding schemes;
 - information measures;

- Information theory studies how to communicate over or compress distributions
 - fundamental limits (achievability and converse);
 - coding schemes;
 - information measures;
 - mathematical tools; ...

- Information theory studies how to communicate over or compress distributions
 - fundamental limits (achievability and converse);
 - coding schemes;
 - information measures;
 - mathematical tools; ...

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

Q. How can we use tools and lessons from information theory to develop machine learning algorithms?

• A few information-theoretic strategies to approach to a learning problem:

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

- A few information-theoretic strategies to approach to a learning problem:
 - abstract out the gist from it in the infinite-sample limit;

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

- A few information-theoretic strategies to approach to a learning problem:
 - abstract out the gist from it in the infinite-sample limit;
 - reduce it to a probability estimation problem and plug-in a "good" probability;

- Information theory studies how to communicate over or compress distributions
- Machine learning studies how to learn (about) distributions from their samples

- A few information-theoretic strategies to approach to a learning problem:
 - abstract out the gist from it in the infinite-sample limit;
 - reduce it to a probability estimation problem and plug-in a "good" probability;
 - adapt and apply relevant ideas from information theory,
 e.g., Wyner's common information, context-tree weighting, mixture probability, ...

Representation learning

Nonparametric methods for large-scale data

S Assumption-free data processing

Representation learning

- learning a generative model with succinct representation learning [Ryu+21];
- a fast kernel embedding without matrix eigendecomposition [RHK21];
- unifying and generalizing contrastive representation learning methods [in progress]
- Nonparametric methods for large-scale data

S Assumption-free data processing

Representation learning

- learning a generative model with succinct representation learning [Ryu+21];
- a fast kernel embedding without matrix eigendecomposition [RHK21];
- unifying and generalizing contrastive representation learning methods [in progress]
- Nonparametric methods for large-scale data
 - optimal classification, regression [RK22], and density estimation [in progress] with 1-nearest neighbors;
 - consistent density-functional estimation with fixed-k-nearest neighbors [Ryu+22];
 - an online mode-estimation algorithm [in progress]
- S Assumption-free data processing

Representation learning

- learning a generative model with succinct representation learning [Ryu+21];
- a fast kernel embedding without matrix eigendecomposition [RHK21];
- unifying and generalizing contrastive representation learning methods [in progress]
- Nonparametric methods for large-scale data
 - optimal classification, regression [RK22], and density estimation [in progress] with 1-nearest neighbors;
 - consistent density-functional estimation with fixed-k-nearest neighbors [Ryu+22];
 - an online mode-estimation algorithm [in progress]
- S Assumption-free data processing
 - efficient universal discrete denoising [RK18];
 - parameter-free online learning with side information via universal gambling [RBK22];
 - universal portfolio with continuous side information [BRK22]
 - time-uniform concentration inequality via universal gambling [in progress]

Representation learning

- learning a generative model with succinct representation learning [Ryu+21];
- a fast kernel embedding without matrix eigendecomposition [RHK21];
- unifying and generalizing contrastive representation learning methods [in progress]

Nonparametric methods for large-scale data

- optimal classification, regression [RK22], and density estimation [in progress] with 1-nearest neighbors;
- consistent density-functional estimation with fixed-k-nearest neighbors [Ryu+22];
- an online mode-estimation algorithm [in progress]
- S Assumption-free data processing
 - efficient universal discrete denoising [RK18];
 - parameter-free online learning with side information via universal gambling [RBK22];
 - universal portfolio with continuous side information [BRK22];
 - time-uniform concentration inequality via universal gambling [in progress]

Representation learning

- learning a generative model with succinct representation learning [Ryu+21];
- a fast kernel embedding without matrix eigendecomposition [RHK21];
- unifying and generalizing contrastive representation learning methods [in progress]

Nonparametric methods for large-scale data

- optimal classification, regression [RK22], and density estimation [in progress] with 1-nearest neighbors;
- consistent density-functional estimation with fixed-k-nearest neighbors [Ryu+22];
- an online mode-estimation algorithm [in progress]
- S Assumption-free data processing
 - efficient universal discrete denoising [RK18];
 - parameter-free online learning with side information via universal gambling [RBK22];
 - universal portfolio with continuous side information [BRK22];
 - time-uniform concentration inequality via universal gambling [in progress]

Part I

From Wyner's Common Information to Learning with Succinct Common Representation

• Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- **Examples**: {(story_i, illustration_i)},

Alice was beginning to get very tired of sitting ...when suddenly a White Rabbit with pink eyes ran close by her ...see it pop down a large rabbit-hole under the hedge.

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...

the bird has a white body, black wings, and webbed orange feet

a blue bird with gray primaries and secondaries and white breast and throat

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
 - Joint generation: Learn $q(\mathbf{x}, \mathbf{y})$ and generate (\mathbf{X}, \mathbf{Y})

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- **Examples**: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
 - Joint generation: Learn $q(\mathbf{x}, \mathbf{y})$ and generate (\mathbf{X}, \mathbf{Y})
 - Conditional generation: Learn $q(\mathbf{y}|\mathbf{x})$ and generate \mathbf{Y} given $\mathbf{x} \sim q(\mathbf{x})$

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- **Examples**: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
 - Joint generation: Learn $q(\mathbf{x}, \mathbf{y})$ and generate (\mathbf{X}, \mathbf{Y})
 - Conditional generation: Learn $q(\mathbf{y}|\mathbf{x})$ and generate \mathbf{Y} given $\mathbf{x} \sim q(\mathbf{x})$
 - Cross-domain retrieval: Given a query x, retrieve relevant y's from a pool $\{y_i\}_{i=1}^n$

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z}, \mathbf{U}, \mathbf{V})$

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z},\mathbf{U},\mathbf{V})$
 - \bullet Disentangle commonality ${\bf Z}$ from private properties ${\bf U}$ and ${\bf V}$

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z}, \mathbf{U}, \mathbf{V})$
 - \bullet Disentangle commonality ${\bf Z}$ from private properties ${\bf U}$ and ${\bf V}$
 - a.k.a. cross-domain disentanglement problem

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z}, \mathbf{U}, \mathbf{V})$
 - Q. Under which criterion should we disentangle?

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z},\mathbf{U},\mathbf{V})$
 - **Q**. What is an optimal common representation?

- Data: $\{(\mathbf{X}_i, \mathbf{Y}_i)\}$ i.i.d. $\sim q(\mathbf{x}, \mathbf{y})$; high. dim., many-to-many relations
- Examples: {(story_i, illustration_i)}, {(image_i, caption_i)}, ...
- Goal: learn the data distribution and sample from it (a.k.a. generation)
- Fit a generative model with structured latent representations $(\mathbf{Z}, \mathbf{U}, \mathbf{V})$
 - **Q**. What is an optimal common representation?
- A. Use information theory to learn disentangled representations!

Motivation

• Cooperative game between Alice and Bob

Motivation

• Cooperative game between Alice and Bob

Motivation

• Cooperative game between Alice and Bob

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo

Child's photo

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo

6 / 28

- Cooperative game between Alice and Bob ۲
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo ۲
- What description dose Alice need to generate and send to help Bob? ۰

6 / 28

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?

- Cooperative game between Alice and Bob
- Alice and Bob wish to draw a nice portrait of adulthood from a child's photo
- What description dose Alice need to generate and send to help Bob?
- Alice can maximally help Bob by providing the most "succinct" description!

• **Problem**: simulate a channel $q(\mathbf{y}|\mathbf{x})$ by communicating nR bits

$$\mathbf{X}^n \xrightarrow{\text{Encoder}} \underbrace{ \begin{array}{c} \mathbf{M} essage \\ \mathbf{M}(\mathbf{x}^n) \end{array}}_{\mathbf{M} \in \{1, \dots, 2^{nR}\}} \xrightarrow{\mathbf{V}^n} \mathbf{Y}^n$$

• **Question**: What is the minimum rate *R**?

- **Question**: What is the minimum rate *R**?
- Answer: Wyner's common information $R^* = J(\mathbf{X}; \mathbf{Y})$

$$\mathbf{X}^{n} \xrightarrow{\text{Encoder}} \underbrace{\mathbf{Message}}_{\mathbf{M}(\mathbf{x}^{n})} \xrightarrow{\mathbf{M} \in \{1, \dots, 2^{nR}\}} \underbrace{\mathbf{V}^{n}}_{\mathbf{y}^{n}(\mathbf{m}, \mathbf{v}^{n})} \xrightarrow{\mathbf{V}^{n}} \mathbf{Y}^{n}$$

- **Question**: What is the minimum rate *R**?
- Answer: Wyner's common information $R^* = J(\mathbf{X}; \mathbf{Y})$

minimize	$I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q(\mathbf{z} \mathbf{x},\mathbf{y})$

$$\mathbf{X}^{n} \xrightarrow{\text{Encoder}} \underbrace{\mathbf{Message}}_{\mathbf{M}(\mathbf{x}^{n})} \xrightarrow{\mathbf{M} \in \{1, \dots, 2^{nR}\}} \underbrace{\mathbf{V}^{n}}_{\mathbf{p}^{n}(\mathbf{m}, \mathbf{v}^{n})} \xrightarrow{\mathbf{V}^{n}} \mathbf{Y}^{n}$$

- **Question**: What is the minimum rate *R**?
- Answer: Wyner's common information $R^* = J(\mathbf{X}; \mathbf{Y})$
- Single-letter characterization

- **Question**: What is the minimum rate R^* ?
- Answer: Wyner's common information $R^* = J(\mathbf{X}; \mathbf{Y})$

Distributed simulation (Wyner 1975)

• **Problem**: simulate a joint distribution $q(\mathbf{x}, \mathbf{y})$ from nR common bits

Distributed simulation (Wyner 1975)

• **Problem**: simulate a joint distribution $q(\mathbf{x}, \mathbf{y})$ from nR common bits

• **Question**: What is the minimum rate R^{**} ?

Distributed simulation (Wyner 1975)

• **Problem**: simulate a joint distribution $q(\mathbf{x}, \mathbf{y})$ from nR common bits

- **Question**: What is the minimum rate R**?
- Answer: $R^{**} = J(\mathbf{X}; \mathbf{Y})$

- Channel synthesis \rightarrow conditional generation
- Distributed simulation \rightarrow joint generation

- \bullet Distributed simulation \rightarrow joint generation

Definition

minimize	$I(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x}, \mathbf{y})$

- Channel synthesis \rightarrow conditional generation
- Distributed simulation \rightarrow joint generation

Definition

Given $q(\mathbf{x}, \mathbf{y})$, define Wyner's common representation as a solution of

minimize	$I(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

• Call Wyner's optimization problem

- Distributed simulation \rightarrow joint generation

Definition

minimize	$I(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

- Call Wyner's optimization problem
- $I(\mathbf{X},\mathbf{Y};\mathbf{Z})$ quantifies the complexity of the representation \mathbf{Z}

- Channel synthesis \rightarrow conditional generation
- Distributed simulation \rightarrow joint generation

Definition

minimize	$I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

- Call Wyner's optimization problem
- $I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ quantifies the complexity of the representation \mathbf{Z}
- Given samples, let's learn a generative model with Wyner's common representation

- Channel synthesis \rightarrow conditional generation
- Distributed simulation \rightarrow joint generation

Definition

minimize	$I(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

- Call Wyner's optimization problem
- $I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ quantifies the complexity of the representation \mathbf{Z}
- Given samples, let's learn a generative model with Wyner's common representation
 - Consider the latent variable models induced by the single letter characterizations

- Channel synthesis \rightarrow conditional generation
- Distributed simulation \rightarrow joint generation

Definition

Given $q(\mathbf{x}, \mathbf{y})$, define Wyner's common representation as a solution of

minimize	$I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

- Call Wyner's optimization problem
- $I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ quantifies the complexity of the representation \mathbf{Z}
- Given samples, let's learn a generative model with Wyner's common representation
 - Consider the latent variable models induced by the single letter characterizations
 - Fit the generative models to data based on Wyner's optimization problem

- Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$
- Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$

- Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$
- Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$
- Model (marginal) encoders: $q_{\theta}(\mathbf{z}|\mathbf{x}), q_{\theta}(\mathbf{z}|\mathbf{y})$

- Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$
- Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$
- Model (marginal) encoders: $q_{\theta}(\mathbf{z}|\mathbf{x}), q_{\theta}(\mathbf{z}|\mathbf{y})$
- Variational encoders: joint $q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{y})$, local $q_{\phi}(\mathbf{u}|\mathbf{z}, \mathbf{x})$, $q_{\phi}(\mathbf{v}|\mathbf{z}, \mathbf{y})$

- Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$
- Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$
- Model (marginal) encoders: $q_{\theta}(\mathbf{z}|\mathbf{x})$, $q_{\theta}(\mathbf{z}|\mathbf{y})$
- Variational encoders: joint $q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{y})$, local $q_{\phi}(\mathbf{u}|\mathbf{z}, \mathbf{x})$, $q_{\phi}(\mathbf{v}|\mathbf{z}, \mathbf{y})$
- Call these components in entirety the variational Wyner model
Probabilistic model

- Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$
- Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$
- Model (marginal) encoders: $q_{\theta}(\mathbf{z}|\mathbf{x})$, $q_{\theta}(\mathbf{z}|\mathbf{y})$
- Variational encoders: joint $q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{y})$, local $q_{\phi}(\mathbf{u}|\mathbf{z},\mathbf{x})$, $q_{\phi}(\mathbf{v}|\mathbf{z},\mathbf{y})$
- Call these components in entirety the variational Wyner model

model θ

variational ϕ

Probabilistic model

• Decoders: $\mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}), \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v})$ • Priors (source of randomness): common $p_{\theta}(\mathbf{z})$, local $p_{\theta}(\mathbf{u}), p_{\theta}(\mathbf{v})$ • Model (marginal) encoders: $q_{\theta}(\mathbf{z}|\mathbf{x}), q_{\theta}(\mathbf{z}|\mathbf{y})$ • Variational encoders: joint $q_{\phi}(\mathbf{z}|\mathbf{x}, \mathbf{y})$, local $q_{\phi}(\mathbf{u}|\mathbf{z}, \mathbf{x}), q_{\phi}(\mathbf{v}|\mathbf{z}, \mathbf{y})$ • Call these components in entirety the variational Wyner model

• The variational Wyner model induces four distributions:

joint cond. $(x \rightarrow y)$ cond. $(y \rightarrow x)$ variational

Jon Ryu (UCSD)

• The variational Wyner model induces four distributions:

joint	$p_{\rightarrow xy}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. $(x \rightarrow y)$	
cond. (y \rightarrow x)	
variational	

• The variational Wyner model induces four distributions:

joint	$p_{\to xy}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (x $ ightarrow$ y)	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y $ ightarrow$ x)	

variational

-

• The variational Wyner model induces four distributions:

joint	$p_{\to xy}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (x $ ightarrow$ y)	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y \rightarrow x)	$p_{y ightarrow x}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) riangleq q(\mathbf{y}) q_{ heta}(\mathbf{z} \mathbf{y}) p_{ heta}(\mathbf{u}) \delta(\mathbf{x} - \mathbf{x}_{ heta}(\mathbf{z}, \mathbf{u}))$

variational

-

• The variational Wyner model induces four distributions:

joint	$p_{\rightarrow \mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. $(x \rightarrow y)$	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y \rightarrow x)	$p_{y \to x}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) \triangleq q(\mathbf{y}) q_{\theta}(\mathbf{z} \mathbf{y}) p_{\theta}(\mathbf{u}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}))$
variational	$q_{\mathbf{x}\mathbf{y}\rightarrow}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}) \triangleq q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x})q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y})$

• The variational Wyner model induces four distributions:

joint	$p_{\rightarrow \mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. $(x \rightarrow y)$	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y \rightarrow x)	$p_{y \to x}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) \triangleq q(\mathbf{y}) q_{\theta}(\mathbf{z} \mathbf{y}) p_{\theta}(\mathbf{u}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}))$
variational	$q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}) \triangleq q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x})q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y})$

Recall Wyner's optimization problem: .

minimize	$I(\mathbf{X},\mathbf{Y};\mathbf{Z})$	
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$	
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$	

• The variational Wyner model induces four distributions:

joint	$p_{\to xy}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (x $ ightarrow$ y)	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y \rightarrow x)	$p_{y \to x}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) \triangleq q(\mathbf{y}) q_{\theta}(\mathbf{z} \mathbf{y}) p_{\theta}(\mathbf{u}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}))$
variational	$q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}) \triangleq q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x})q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y})$

Recall Wyner's optimization problem:

minimize	$I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$	
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$	
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$	

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$, we can relax the problem as

 $\label{eq:minimize} \begin{array}{c} \text{minimize} \quad D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{Cl}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array}$

• The variational Wyner model induces four distributions:

joint	$p_{\to xy}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v}) \triangleq p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{u}) p_{\theta}(\mathbf{v}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u})) \delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (x $ ightarrow$ y)	$p_{x \to y}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{v}) \triangleq q(\mathbf{x})q_{\theta}(\mathbf{z} \mathbf{x})p_{\theta}(\mathbf{v})\delta(\mathbf{y} - \mathbf{y}_{\theta}(\mathbf{z}, \mathbf{v}))$
cond. (y \rightarrow x)	$p_{y \to x}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}) \triangleq q(\mathbf{y}) q_{\theta}(\mathbf{z} \mathbf{y}) p_{\theta}(\mathbf{u}) \delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{z}, \mathbf{u}))$
variational	$q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}) \triangleq q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x})q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y})$

Recall Wyner's optimization problem:

minimize	$I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$	
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$	
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$	

• For each model $p_{\mathsf{model}} \in \{p_{\rightarrow \mathsf{xy}}, p_{\mathsf{x} \rightarrow \mathsf{y}}, p_{\mathsf{y} \rightarrow \mathsf{x}}\}$, we can relax the problem as

 $\label{eq:minimize} \begin{array}{c} \text{minimize} \quad D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array}$

• Distribution matching with CI regularization

Jon Ryu (UCSD)

• For each model $p_{\mathsf{model}} \in \{p_{\rightarrow \mathsf{xy}}, p_{\mathsf{x} \rightarrow \mathsf{y}}, p_{\mathsf{y} \rightarrow \mathsf{x}}\}$,

$$\text{minimize} \quad D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \\$$

• Distribution matching with CI regularization

• For each model $p_{\mathsf{model}} \in \{p_{\rightarrow \mathsf{x}\mathsf{y}}, p_{\mathsf{x} \rightarrow \mathsf{y}}, p_{\mathsf{y} \rightarrow \mathsf{x}}\}$,

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$

• For each model $p_{\mathsf{model}} \in \{p_{\rightarrow \mathsf{x}\mathsf{y}}, p_{\mathsf{x} \rightarrow \mathsf{y}}, p_{\mathsf{y} \rightarrow \mathsf{x}}\}$,

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$,

 $\begin{array}{ll} \text{minimize} & D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array} \\ \end{array}$

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]
- Auxiliary losses: reconstruction losses, latent-matching losses, cross-matching loss, ...

• For each model $p_{\mathsf{model}} \in \{p_{\to xy}, p_{\mathsf{x} \to \mathsf{y}}, p_{\mathsf{y} \to \mathsf{x}}\}$,

 $\begin{array}{ll} \text{minimize} \quad D(p_{\text{model}}, q_{\text{xy}}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array}$

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]
- Auxiliary losses: reconstruction losses, latent-matching losses, cross-matching loss, ...
- Simultaneous training: minimize a weighted sum of the objectives

• For each model $p_{\mathsf{model}} \in \{p_{\to xy}, p_{\mathsf{x} \to \mathsf{y}}, p_{\mathsf{y} \to \mathsf{x}}\}$,

 $\begin{array}{ll} \text{minimize} & D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array} \\ \end{array}$

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]
- Auxiliary losses: reconstruction losses, latent-matching losses, cross-matching loss, ...
- Simultaneous training: minimize a weighted sum of the objectives
 - In practice, weights including $\lambda_{\text{model}}^{\text{CI}}$ can be chosen by trial and error

• For each model $p_{\mathsf{model}} \in \{p_{\to xy}, p_{\mathsf{x} \to \mathsf{y}}, p_{\mathsf{y} \to \mathsf{x}}\}$,

 $\begin{array}{ll} \text{minimize} \quad D(p_{\text{model}}, q_{\text{xy}}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array}$

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]
- Auxiliary losses: reconstruction losses, latent-matching losses, cross-matching loss, ...
- Simultaneous training: minimize a weighted sum of the objectives
- Additional tricks: shared discriminator feature maps, deterministic encoders, instance noise trick

• For each model $p_{\mathsf{model}} \in \{p_{\to xy}, p_{\mathsf{x} \to \mathsf{y}}, p_{\mathsf{y} \to \mathsf{x}}\}$,

 $\begin{array}{ll} \text{minimize} & D(p_{\text{model}}, q_{\text{xy} \rightarrow}) + \lambda_{\text{model}}^{\text{CI}} I_{\text{model}}(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) \end{array} \\ \end{array}$

- Distribution matching with CI regularization
- Symmetric KL divergence $D_{sym}(p,q) \triangleq D_{KL}(p \parallel q) + D_{KL}(q \parallel p)$
- Variational density-ratio estimation technique [Pu+17]
- Auxiliary losses: reconstruction losses, latent-matching losses, cross-matching loss, ...
- Simultaneous training: minimize a weighted sum of the objectives
- Additional tricks: shared discriminator feature maps, deterministic encoders, instance noise trick
- Plug-in deep neural networks for encoders, decoders, discriminators

Jon Ryu (UCSD)

• $(\mathbf{X}, \mathbf{Y}) = (\mathsf{MNIST}, \mathsf{SVHN})$ with label(SVHN)=label(MNIST)+1

• (X, Y) = (MNIST, SVHN) with label(SVHN)=label(MNIST)+1

• **Z**=label, $(\mathbf{U},\mathbf{V})\approx$ (style of MNIST, style of SVHN)

- $\bullet\,$ Generated samples: same z across the rows; same u,v across the columns
- A red box highlights inputs; a yellow box highlight style references

- Numerical evaluation: $\lambda_{\rm model}^{\rm CI}$ vs. quality of generated samples
- Frechet distance: measures a distance between generated samples and test dataset
- Digit classification error: computed by pretrained MNIST/SVHN classifiers

• (X, Y)=(photo, human sketch)

• $\mathbf{Z} \approx$ image class, $(\mathbf{U},\mathbf{V}) \approx$ (variation in photo, style of sketch)

- $\mathbf{Z} \approx$ image class, $(\mathbf{U},\mathbf{V}) \approx$ (variation in photo, style of sketch)
- Cross-domain retrieval: given a sketch (\mathbf{y}) , retrieve photos (\mathbf{x})

- $\mathbf{Z} \approx$ image class, $(\mathbf{U},\mathbf{V}) \approx$ (variation in photo, style of sketch)
- Cross-domain retrieval: given a sketch (\mathbf{y}) , retrieve photos (\mathbf{x})
- Our method: retrieve via common representations

- $\mathbf{Z} pprox$ image class, $(\mathbf{U},\mathbf{V}) pprox$ (variation in photo, style of sketch)
- Cross-domain retrieval: given a sketch (\mathbf{y}) , retrieve photos (\mathbf{x})
- Our method: retrieve via common representations
 - Train both conditional models;

- $\mathbf{Z} pprox$ image class, $(\mathbf{U},\mathbf{V}) pprox$ (variation in photo, style of sketch)
- Cross-domain retrieval: given a sketch (\mathbf{y}) , retrieve photos (\mathbf{x})
- Our method: retrieve via common representations
 - Train both conditional models;
 - Using $q_{\theta}(\mathbf{z}|\mathbf{x})$, register common representations $\{\mathbf{z}_j\}_{j \in [n]}$ of test photos $\{\mathbf{x}_j\}_{j \in [n]}$;

• (X, Y)=(photo, human sketch)

- $\mathbf{Z} pprox$ image class, $(\mathbf{U},\mathbf{V}) pprox$ (variation in photo, style of sketch)
- Cross-domain retrieval: given a sketch (\mathbf{y}) , retrieve photos (\mathbf{x})
- Our method: retrieve via common representations
 - Train both conditional models;
 - Using $q_{\theta}(\mathbf{z}|\mathbf{x})$, register common representations $\{\mathbf{z}_j\}_{j \in [n]}$ of test photos $\{\mathbf{x}_j\}_{j \in [n]}$;
 - Given a sketch \mathbf{y}_o , retrieve the K-nearest neighbors of $\mathbf{z}_o \sim q_{\theta}(\mathbf{z}|\mathbf{y}_o)$ from $\{\mathbf{z}_j\}_{j \in [n]}$

- Zero-shot: training set has no overlapping classes with test set
- Examples: correct retrievals (left) / wrong retrievals (right)

- Zero-shot: training set has no overlapping classes with test set
- Examples: correct retrievals (left) / wrong retrievals (right)

• Numerical evaluation: precision@K (P@K), mean average precision (mAP)

Models	P@100	mAP
LCALE [Lin+20]	0.583	0.476
IIAE [Hwa+20]	0.659	0.573
Variational Wyner	0.703	0.629

• Wyner's common representation:

 $\min_{q(\mathbf{z}|\mathbf{x},\mathbf{y}):\mathbf{X}-\mathbf{Z}-\mathbf{Y}} I(\mathbf{Z};\mathbf{X},\mathbf{Y})$

• Wyner's common representation:

$$\min_{q(\mathbf{z}|\mathbf{x},\mathbf{y}):\mathbf{X}-\mathbf{Z}-\mathbf{Y}} I(\mathbf{Z};\mathbf{X},\mathbf{Y})$$

- Learning distributions with Wyner's common information
 - \rightarrow disentangled representations
 - \rightarrow better performance in downstream tasks!

• Wyner's common representation:

$$\min_{q(\mathbf{z}|\mathbf{x},\mathbf{y}):\mathbf{X}-\mathbf{Z}-\mathbf{Y}} I(\mathbf{Z};\mathbf{X},\mathbf{Y})$$

- Learning distributions with Wyner's common information
 - \rightarrow disentangled representations
 - \rightarrow better performance in downstream tasks!
- Q1. What is the operational meaning of Wyner's common representation?

• Wyner's common representation:

$$\min_{q(\mathbf{z}|\mathbf{x},\mathbf{y}):\mathbf{X}-\mathbf{Z}-\mathbf{Y}} I(\mathbf{Z};\mathbf{X},\mathbf{Y})$$

- Learning distributions with Wyner's common information
 - \rightarrow disentangled representations
 - \rightarrow better performance in downstream tasks!
- Q1. What is the operational meaning of Wyner's common representation?
- Q2. More than two variables?

Part II

From the Power of Random Guessing to Scalable Nearest-Neighbor Algorithms

Nearest-neighbor classification

• Data: Let $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$
• Data: Let $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$

Assume a separable metric space (\mathcal{X}, ρ) , e.g., $\mathcal{X} = \mathbb{R}^d$ with Euclidean distance

• Data: Let $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$

Assume a separable metric space (\mathcal{X}, ρ) , e.g., $\mathcal{X} = \mathbb{R}^d$ with Euclidean distance For binary $\mathcal{Y} = \{0, 1\}$, let $\eta(x) = P(Y = 1 | X = x)$

- Data: Let {(X₁, Y₁),..., (X_n, Y_n)} be i.i.d. samples over X × Y
 Assume a separable metric space (X, ρ), e.g., X = ℝ^d with Euclidean distance
 For binary Y = {0,1}, let η(x) = P(Y = 1|X = x)
- **Goal**: Construct a classifier $\hat{g}: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathsf{P}\{\hat{g}(X) \neq Y\}$

- Data: Let {(X₁, Y₁),..., (X_n, Y_n)} be i.i.d. samples over X × Y
 Assume a separable metric space (X, ρ), e.g., X = ℝ^d with Euclidean distance
 For binary Y = {0,1}, let η(x) = P(Y = 1|X = x)
- **Goal**: Construct a classifier $\hat{g} \colon \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathsf{P}\{\hat{g}(X) \neq Y\}$
- The Bayes classifier $g^*(x) = 1\{\eta(x) \ge \frac{1}{2}\}$ is optimal

- Data: Let $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$ Assume a separable metric space (\mathcal{X}, ρ) , e.g., $\mathcal{X} = \mathbb{R}^d$ with Euclidean distance For binary $\mathcal{Y} = \{0, 1\}$, let $\eta(x) = \mathsf{P}(Y = 1 | X = x)$
- **Goal**: Construct a classifier $\hat{g} \colon \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathsf{P}\{\hat{g}(X) \neq Y\}$
- The Bayes classifier $g^*(x) = 1\{\eta(x) \ge \frac{1}{2}\}$ is optimal
- k-nearest-neighbor (k-NN) classifier \hat{g}_{k-NN} : for a query x, find the k-nearest neighbors of x and take the majority vote over the labels

- Data: Let $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$ Assume a separable metric space (\mathcal{X}, ρ) , e.g., $\mathcal{X} = \mathbb{R}^d$ with Euclidean distance For binary $\mathcal{Y} = \{0, 1\}$, let $\eta(x) = \mathsf{P}(Y = 1 | X = x)$
- **Goal**: Construct a classifier $\hat{g}: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathsf{P}\{\hat{g}(X) \neq Y\}$
- The Bayes classifier $g^*(x) = 1\{\eta(x) \ge \frac{1}{2}\}$ is optimal
- k-nearest-neighbor (k-NN) classifier \hat{g}_{k-NN} : for a query x, find the k-nearest neighbors of x and take the majority vote over the labels
- Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

- Data: Let $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ be i.i.d. samples over $\mathcal{X} \times \mathcal{Y}$ Assume a separable metric space (\mathcal{X}, ρ) , e.g., $\mathcal{X} = \mathbb{R}^d$ with Euclidean distance For binary $\mathcal{Y} = \{0, 1\}$, let $\eta(x) = \mathsf{P}(Y = 1 | X = x)$
- **Goal**: Construct a classifier $\hat{g}: \mathcal{X} \to \mathcal{Y}$ that minimizes $\mathsf{P}\{\hat{g}(X) \neq Y\}$
- The Bayes classifier $g^*(x) = 1\{\eta(x) \ge \frac{1}{2}\}$ is optimal
- k-nearest-neighbor (k-NN) classifier \hat{g}_{k-NN} : for a query x, find the k-nearest neighbors of x and take the majority vote over the labels
- Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

• Stone (1977): If $k \to \infty$ with k = o(n)

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{k\text{-NN}}(X) \neq Y\} = \mathsf{P}\{g^*(X) \neq Y\}$$

• Classification, regression, density estimation, density functional estimation, ...

- Classification, regression, density estimation, density functional estimation, ...
- (+) Simple, elegant, well-understood

- Classification, regression, density estimation, density functional estimation, ...
- (+) Simple, elegant, well-understood
- ullet (-) Not directly applicable for large-scale datasets

- Classification, regression, density estimation, density functional estimation, ...
- (+) Simple, elegant, well-understood
- (-) Not directly applicable for large-scale datasets

Q. Can we make the k-NN-based algorithms viable in the realm of big data?

• Detect a signal Y from an observation X to minimize $P_e = \mathsf{P}\{\hat{y}(X) \neq Y\}$

- Detect a signal Y from an observation X to minimize $P_e = \mathsf{P}\{\hat{y}(X) \neq Y\}$
- **Example**: In channel coding, find $\hat{m}(X)$ that minimizes $\mathsf{P}\{\hat{m}(X) \neq M\}$

$$\xrightarrow{\mathbf{M}} \operatorname{Encoder} \xrightarrow{\mathbf{Y}} p(\mathbf{x}|\mathbf{y}) \xrightarrow{\mathbf{X}} \operatorname{Decoder} \xrightarrow{\hat{\mathbf{M}}}$$

- Detect a signal Y from an observation X to minimize $P_e = \mathsf{P}\{\hat{y}(X) \neq Y\}$
- **Example**: In channel coding, find $\hat{m}(X)$ that minimizes $\mathsf{P}\{\hat{m}(X) \neq M\}$

$$\xrightarrow{\mathbf{M}} \operatorname{Encoder} \xrightarrow{\mathbf{Y}} p(\mathbf{x}|\mathbf{y}) \xrightarrow{\mathbf{X}} \operatorname{Decoder} \xrightarrow{\hat{\mathbf{M}}}$$

• Maximum a-posteriori probability (MAP) detector:

$$\hat{y}^*(x) = \arg \max_{y \in \mathcal{Y}} p(y|x)$$

- Detect a signal Y from an observation X to minimize $P_e = \mathsf{P}\{\hat{y}(X) \neq Y\}$
- **Example**: In channel coding, find $\hat{\mathbf{m}}(\mathbf{X})$ that minimizes $\mathsf{P}\{\hat{\mathbf{m}}(\mathbf{X})\neq\mathbf{M}\}$

$$\xrightarrow{\mathbf{M}} \operatorname{Encoder} \xrightarrow{\mathbf{Y}} p(\mathbf{x}|\mathbf{y}) \xrightarrow{\mathbf{X}} \operatorname{Decoder} \xrightarrow{\hat{\mathbf{M}}}$$

• Maximum a-posteriori probability (MAP) detector:

$$\hat{y}^*(x) = \arg\max_{y \in \mathcal{Y}} p(y|x)$$

• Randomized likelihood (RL) detector [YAG13]:

 $\hat{Y}(x) \sim p(y|x)$

Liu-Cuff-Verdú lemma (2017)

$$\mathsf{P}\{\hat{Y}(X) \neq Y\} \le 2P_e^* = 2\,\mathsf{P}\{\hat{y}^*(X) \neq Y\}$$

Liu–Cuff–Verdú lemma (2017)

$$\mathsf{P}\{\hat{Y}(X) \neq Y\} \leq 2P_e^* = 2\,\mathsf{P}\{\hat{y}^*(X) \neq Y\}$$

A general factor-of-two bound [Bha+18]

For any metric d(y, y') and $Y \stackrel{d}{=} Y'$,

 $\mathsf{E}[d(Y,Y')] \le 2\inf_{y \in \mathcal{Y}} \mathsf{E}[d(Y,y)]$

Liu–Cuff–Verdú lemma (2017)

$$\mathsf{P}\{\hat{Y}(X) \neq Y\} \leq 2P_e^* = 2\,\mathsf{P}\{\hat{y}^*(X) \neq Y\}$$

A general factor-of-two bound [Bha+18]

For any metric d(y, y') and $Y \stackrel{d}{=} Y'$,

$$\mathsf{E}[d(Y,Y')] \le 2\inf_{y\in\mathcal{Y}}\mathsf{E}[d(Y,y)]$$

• *Proof.* Triangle inequality

Liu–Cuff–Verdú lemma (2017)

$$\mathsf{P}\{\hat{Y}(X)\neq Y\}\leq 2P_e^*=2\,\mathsf{P}\{\hat{y}^*(X)\neq Y\}$$

A general factor-of-two bound [Bha+18]

For any metric d(y, y') and $Y \stackrel{d}{=} Y'$,

$$\mathsf{E}[d(Y,Y')] \le 2\inf_{y\in\mathcal{Y}} \mathsf{E}[d(Y,y)]$$

- *Proof.* Triangle inequality
- Proof of the LCV lemma. Let $d(y, \hat{y}) = \mathbb{1}\{y \neq y'\}$, apply the general bound for each x, and take expectation w.r.t. X

• Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

• Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

can be thought as a manifestation of the power of random guessing

• Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

can be thought as a manifestation of the power of random guessing

Lemma (Cover and Hart, 1967)

Let $X_{(1)}(x)$ be the nearest neighbor of x from i.i.d. samples $\{X_1,\ldots,X_n\}$ If (\mathcal{X},ρ) is a separable metric space,

$$\lim_{n \to \infty} \rho(X_{(1)}(x), x) = 0 \text{ with probability } 1$$

• Cover and Hart (1967):

$$\lim_{n \to \infty} \mathsf{P}\{\hat{g}_{1-\mathsf{NN}}(X) \neq Y\} \le 2\,\mathsf{P}\{g^*(X) \neq Y\}$$

can be thought as a manifestation of the power of random guessing

Lemma (Cover and Hart, 1967)

Let $X_{(1)}(x)$ be the nearest neighbor of x from i.i.d. samples $\{X_1, \ldots, X_n\}$ If (\mathcal{X}, ρ) is a separable metric space,

$$\lim_{n \to \infty} \rho(X_{(1)}(x), x) = 0$$
 with probability 1

• Observation 1. (1-NN classifier \equiv RL detector) in the sample limit

• Let $\{Y_1'(x),\ldots,Y_M'(x)\}$ be a set of conditionally i.i.d. copies of $Y|\{X=x\}$ and

 $\hat{Y}_M(x) = \text{mode}(Y'_1(x), \dots, Y'_M(x))$

• Let $\{Y_1'(x),\ldots,Y_M'(x)\}$ be a set of conditionally i.i.d. copies of $Y|\{X=x\}$ and $\hat{Y}_M(x)=\mathrm{mode}(Y_1'(x),\ldots,Y_M'(x))$

```
Theorem [Bha+18]
```

For any $\delta>0$

 $\mathsf{P}\{\hat{Y}_M(X) \neq Y\} \leq P_e^* + O(M)(e^{-\delta^2 \Omega(M)} + \mathsf{P}\{\Delta(X) \leq \delta\})$

where

 $\Delta(x) \triangleq (\text{the gap between the first and second largest values of } \{p(y|x)\}_{y \in \mathcal{Y}})$

• Let $\{Y_1'(x),\ldots,Y_M'(x)\}$ be a set of conditionally i.i.d. copies of $Y|\{X=x\}$ and $\hat{Y}_M(x)=\mathrm{mode}(Y_1'(x),\ldots,Y_M'(x))$

```
Theorem [Bha+18]
For any \delta > 0
```

```
\mathsf{P}\{\hat{Y}_M(X) \neq Y\} \leq P_e^* + O(M)(e^{-\delta^2 \Omega(M)} + \mathsf{P}\{\Delta(X) \leq \delta\})
```

where

 $\Delta(x) \triangleq (\text{the gap between the first and second largest values of } \{p(y|x)\}_{y \in \mathcal{Y}})$

• Proof. Hoeffding and Vapnik-Chervonenkis

Jon Ryu (UCSD)

• Let $\{Y_1'(x),\ldots,Y_M'(x)\}$ be a set of conditionally i.i.d. copies of $Y|\{X=x\}$ and $\hat{Y}_M(x)=\mathrm{mode}(Y_1'(x),\ldots,Y_M'(x))$

```
Theorem [Bha+18]
```

For any $\delta>0$

 $\mathsf{P}\{\hat{Y}_M(X) \neq Y\} \leq P_e^* + O(M)(e^{-\delta^2 \Omega(M)} + \mathsf{P}\{\Delta(X) \leq \delta\})$

where

 $\Delta(x) \triangleq (\text{the gap between the first and second largest values of } \{p(y|x)\}_{y \in \mathcal{Y}})$

- Proof. Hoeffding and Vapnik-Chervonenkis
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M \rightarrow \infty$

Jon Ryu (UCSD)

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses ightarrow MAP detector) as $M
 ightarrow\infty$
- The *M*-NN classifier is one way to emulate the power of multiple random guessing

 $\hat{g}_{M-NN}(x) = \mathsf{mode}(Y_{(1)}(x), \dots, Y_{(M)}(x))$

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M\rightarrow\infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M \rightarrow \infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting
- We call the resulting classifier \tilde{g}_M the *M*-split 1-NN classifier

Power of multiple random guessing with 1-NN classifier

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M \rightarrow \infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting
- We call the resulting classifier \tilde{g}_M the *M*-split 1-NN classifier

Power of multiple random guessing with 1-NN classifier

- Observation 1. (1-NN classifier \equiv RL detector) in the sample limit
- Observation 2. (majority vote over M random guesses \rightarrow MAP detector) as $M \rightarrow \infty$
- Proposal: aggregate multiple 1-NN classifiers with sample splitting
- We call the resulting classifier \tilde{g}_M the *M*-split 1-NN classifier
- Fully parallelizable; with S workers, query complexity becomes 1/S

Theorem (excess risk) [RK22]

For $\mathcal{X} = \mathbb{R}^d$ with metric $\rho(x, x')$, assume:

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{(I)} $\eta(x)=\mathsf{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

 $|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{(} \eta(x)=\mathbb{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous$ for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

$$|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$$

 $\ensuremath{ @ \ } \eta \mbox{ satisfies the } \beta \mbox{-margin condition for } \beta > 0 \mbox{, i.e., } \exists \ C > 0 \mbox{ s.t.} \label{eq:gamma-state}$

$$\mathsf{P}\Big\{\Big|\eta(X) - \frac{1}{2}\Big| \le \Delta\Big\} \le C\Delta^{\beta}$$

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{($\eta(x)=\mathsf{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

$$|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$$

 $\ensuremath{ @ \ } \eta \mbox{ satisfies the } \beta \mbox{-margin condition for } \beta > 0 \mbox{, i.e., } \exists \ C > 0 \mbox{ s.t.} \label{eq:gamma-state}$

$$\mathsf{P}\Big\{\Big|\eta(X) - \frac{1}{2}\Big| \le \Delta\Big\} \le C\Delta^{\beta}$$

 $\text{For } M = \Theta(N^{\frac{2\alpha}{2\alpha+d}}), \text{ } \mathsf{E}[\mathsf{P}\{\tilde{g}_M(X) \neq Y\}] - \mathsf{P}\{g^*(X) \neq Y\} = \tilde{O}(N^{-\frac{(\beta+1)\alpha}{2\alpha+d}})$

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{($\eta(x)=\mathsf{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

$$|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$$

 $\ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ @ \ensuremath{ @ \ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ & \en$

$$\mathsf{P}\Big\{\Big|\eta(X) - \frac{1}{2}\Big| \le \Delta\Big\} \le C\Delta^{\beta}$$

 $\text{For } M = \Theta(N^{\frac{2\alpha}{2\alpha+d}}), \text{ } \mathsf{E}[\mathsf{P}\{\tilde{g}_M(X) \neq Y\}] - \mathsf{P}\{g^*(X) \neq Y\} = \tilde{O}(N^{-\frac{(\beta+1)\alpha}{2\alpha+d}})$

• Nearly minimax-optimal [AT+07]

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{ } \eta(x)=\mathsf{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous$ for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

$$|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$$

 $\ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ @ \ensuremath{ @ \ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ & \ensuremath{ @ \ensuremath{ & \ensuremath{ @ \ensuremath{ & \en$

$$\mathsf{P}\Big\{\Big|\eta(X) - \frac{1}{2}\Big| \leq \Delta\Big\} \leq C\Delta^{\beta}$$

 $\text{For } M = \Theta(N^{\frac{2\alpha}{2\alpha+d}}), \, \mathsf{E}[\mathsf{P}\{\tilde{g}_M(X) \neq Y\}] - \mathsf{P}\{g^*(X) \neq Y\} = \tilde{O}(N^{-\frac{(\beta+1)\alpha}{2\alpha+d}})$

- Nearly minimax-optimal [AT+07]
- The M-split 1-NN classifier emulates a $\Theta(M)$ -NN classifier [CD14]

Jon Ryu (UCSD)

 $\begin{array}{l} \mbox{Theorem (excess risk) [RK22]} \\ \mbox{For $\mathcal{X}=\mathbb{R}^d$ with metric $\rho(x,x')$, assume:} \\ \mbox{($\eta(x)=\mathsf{P}\{Y=1|X=x\}$ is (α,A)-Hölder continuous for some $0<\alpha\leq1$ and $A>0$, i.e., $\forall x,x'\in\mathcal{X}$,} \end{array}$

$$|\eta(x) - \eta(x')| \le A\rho^{\alpha}(x, x').$$

 $\ensuremath{ @ \ } \eta \mbox{ satisfies the } \beta \mbox{-margin condition for } \beta > 0, \mbox{ i.e., } \exists \ C > 0 \mbox{ s.t.} \label{eq:gamma-star}$

$$\mathsf{P}\Big\{\Big|\eta(X) - \frac{1}{2}\Big| \le \Delta\Big\} \le C\Delta^{\beta}$$

 $\text{For } M = \Theta(N^{\frac{2\alpha}{2\alpha+d}}), \text{ } \mathsf{E}[\mathsf{P}\{\tilde{g}_M(X) \neq Y\}] - \mathsf{P}\{g^*(X) \neq Y\} = \tilde{O}(N^{-\frac{(\beta+1)\alpha}{2\alpha+d}})$

- Nearly minimax-optimal [AT+07]
- The *M*-split 1-NN classifier emulates a $\Theta(M)$ -NN classifier [CD14]
- Proof idea: analyze an intermediate distance-selective rule

Jon Ryu (UCSD)

• An existing divide-and-conquer framework [QDC19] requires $k \to \infty$ for the base k-NN classifier, to be optimal

- An existing divide-and-conquer framework [QDC19] requires $k\to\infty$ for the base k-NN classifier, to be optimal
- Aggregating multiple runs of the simplest 1-NN search is all we need!

- An existing divide-and-conquer framework [QDC19] requires $k\to\infty$ for the base k-NN classifier, to be optimal
- Aggregating multiple runs of the simplest 1-NN search is all we need!
- cf. distributed NN search [FMP20], approximate NN search [HIM12]

- An existing divide-and-conquer framework [QDC19] requires $k\to\infty$ for the base k-NN classifier, to be optimal
- Aggregating multiple runs of the simplest 1-NN search is all we need!
- cf. distributed NN search [FMP20], approximate NN search [HIM12]
- The same framework works for regression and can be extended to density estimation

- An existing divide-and-conquer framework [QDC19] requires $k\to\infty$ for the base k-NN classifier, to be optimal
- Aggregating multiple runs of the simplest 1-NN search is all we need!
- cf. distributed NN search [FMP20], approximate NN search [HIM12]
- The same framework works for regression and can be extended to density estimation
- Q. Split-and-aggregate framework for other nonparametric algorithms?

• My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members
- Prof. Dasgupta's group members

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members
- Prof. Dasgupta's group members
- My friends

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members
- Prof. Dasgupta's group members
- My friends
- My parents

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members
- Prof. Dasgupta's group members
- My friends
- My parents
- My wife Kyungeun

- My advisors: Prof. Young-Han Kim and Prof. Sanjoy Dasgupta
- Committee members: Prof. Ery Arias-Castro, Prof. Yoav Freund, Prof. Nikolay Atanasov, Prof. Piya Pal
- Funding sources: NAVER, Samsung, NSF, Kwanjeong educational foundation
- Internship mentors: Dr. Yoojin Choi (Samsung), Dr. Yang Yang (Qualcomm)
- Prof. Kim's group members
- Prof. Dasgupta's group members
- My friends
- My parents
- My wife Kyungeun
- My babies Arielle and Asher

Thank you!

References I

- (* and † indicate equal contribution and alphabetical ordering, respectively.)
- [AT+07] J.-Y. Audibert, A. B. Tsybakov, et al. "Fast learning rates for plug-in classifiers". In: *Ann. Stat.* 35.2 (2007), pp. 608–633.
- [BRK22] A. Bhatt^{*}, J. J. Ryu^{*}, and Y.-H. Kim. "On Universal Portfolios with Continuous Side Information". In: (2022). arXiv: 2202.02431 [cs.IT].
- [Bha+18] A. Bhatt[†], J.-T. Huang[†], Y.-H. Kim[†], J. J. Ryu[†], and P. Sen[†].
 "Variations on a theme by Liu, Cuff, and Verdú: The power of posterior sampling". In: Proc. IEEE Inf. Theory Workshop. IEEE. 2018, pp. 1–5.
- [CD14] K. Chaudhuri and S. Dasgupta. "Rates of convergence for nearest neighbor classification". In: Adv. Neural Info. Proc. Syst. Vol. 27. Curran Associates, Inc., 2014, pp. 3437–3445.
- [CH67] T. M. Cover and P. Hart. "Nearest neighbor pattern classification". In: *IEEE Trans. Inf. Theory* 13.1 (1967), pp. 21–27.

References II

- [FMP20] R. Fathi, A. R. Molla, and G. Pandurangan. "Efficient distributed algorithms for the k-nearest neighbors problem". In: Proc. 32nd ACM Symp. Parallelism Algorithms Archit. 2020, pp. 527–529.
- [HIM12] S. Har-Peled, P. Indyk, and R. Motwani. "Approximate nearest neighbor: Towards removing the curse of dimensionality". In: *Theory Comput.* 8.1 (2012), pp. 321–350.
- [Hwa+20] H. Hwang, G.-H. Kim, S. Hong, and K.-E. Kim. "Variational Interaction Information Maximization for Cross-domain Disentanglement". In: Adv. Neural Info. Proc. Syst. Vol. 33. 2020.
- [Lin+20] K. Lin, X. Xu, L. Gao, Z. Wang, and H. T. Shen. "Learning cross-aligned latent embeddings for zero-shot cross-modal retrieval". In: Proc. AAAI Conf. Artif. Int. Vol. 34. 2020, pp. 11515–11522.
- [LCV17] J. Liu, P. Cuff, and S. Verdú. "On α-decodability and α-likelihood decoder". In: Proc. 55th Ann. Allerton Conf. Comm. Control Comput. Monticello, IL, Oct. 2017.

References III

- [Pu+17] Y. Pu, W. Wang, R. Henao, L. Chen, Z. Gan, C. Li, and L. Carin. "Adversarial symmetric variational autoencoder". In: Adv. Neural Info. Proc. Syst. 2017, pp. 4330–4339.
- [QDC19] X. Qiao, J. Duan, and G. Cheng. "Rates of Convergence for Large-scale Nearest Neighbor Classification". In: Adv. Neural Info. Proc. Syst. Vol. 32. Curran Associates, Inc., 2019, pp. 10768–10779.
- [RBK22] J. J. Ryu, A. Bhatt, and Y.-H. Kim. "Parameter-Free Online Linear Optimization with Side Information via Universal Coin Betting". In: Int. Conf. Artif. Int. Stat. 2022. arXiv: 2202.02431 [cs.IT].
- [Ryu+21] J. J. Ryu, Y. Choi, Y.-H. Kim, M. El-Khamy, and J. Lee. "Learning with Succinct Common Representation Based on Wyner's Common Information". In: (2021). In preparation; An extended abstract was presented in Bayesian Deep Learning Workshop at NeurIPS in 2021.

References IV

- [Ryu+22] J. J. Ryu*, S. Ganguly*, Y.-H. Kim, Y.-K. Noh, and D. D. Lee. "Nearest neighbor density functional estimation from inverse Laplace transform". In: IEEE Trans. Inf. Theory (2022). to appear. arXiv: 1805.08342 [math.ST].
- [RHK21] J. J. Ryu, J.-T. Huang, and Y.-H. Kim. "On the Role of Eigendecomposition in Kernel Embedding". In: Proc. IEEE Int. Symp. Inf. Theory. IEEE. 2021, pp. 2030–2035.
- [RK22] J. J. Ryu and Y.-H. Kim. "One-Nearest-Neighbor Search Is All You Need for Minimax Regression and Classification". 2022. arXiv: 2202.02464 [math.ST].
- [RK18] J. Ryu and Y.-H. Kim. "Conditional distribution learning with neural networks and its application to universal image denoising". In: Proc. IEEE Int. Conf. Image Proc. IEEE. 2018, pp. 3214–3218.

References V

- [San+16] P. Sangkloy, N. Burnell, C. Ham, and J. Hays. "The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies". In: ACM Trans. Graph. (Proc. SIGGRAPH) (2016).
- [Shi+19] Y. Shi, N. Siddharth, B. Paige, and P. H. Torr. "Variational mixture-of-experts autoencoders for multi-modal deep generative models". In: Adv. Neural Info. Proc. Syst. Vol. 32. 2019.
- [Sto77] C. J. Stone. "Consistent nonparametric regression". In: Ann. Stat. (1977), pp. 595–620.
- [YAG13] M. H. Yassaee, M. R. Aref, and A. Gohari. "A technique for deriving one-shot achievability results in network information theory". In: Proc. IEEE Int. Symp. Inf. Theory. Istanbul, Turkey, 2013, pp. 1151–1155.

Backup Slides

How to use the variational Wyner model

- Variational encoders are introduced for training, but can be also used in sampling
- Local variational encoders $q_{\phi}(\mathbf{u}|\mathbf{z}, \mathbf{x}), q_{\phi}(\mathbf{v}|\mathbf{z}, \mathbf{y})$ can be viewed as style extractors

Jon Ryu (UCSD)

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$:

minimize	$I_{xy ightarrow}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$:

minimize	$I_{xy ightarrow}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$\mathbf{X} - \mathbf{Z} - \mathbf{Y}$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y})$

 \blacksquare Replace $\mathbf{X} - \mathbf{Z} - \mathbf{Y}$ with the model consistency

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$:

minimize	$I_{xy ightarrow}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})\equiv q_{xy ightarrow}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

() Replace $\mathbf{X} - \mathbf{Z} - \mathbf{Y}$ with the model consistency

• For each model $p_{\text{model}} \in \{p_{\rightarrow xy}, p_{x \rightarrow y}, p_{y \rightarrow x}\}$:

minimize	$I_{xy ightarrow}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}))=0$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

() Replace $\mathbf{X} - \mathbf{Z} - \mathbf{Y}$ with the model consistency
minimize	$I_{xy o}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}))=0$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

- \blacksquare Replace $\mathbf{X} \mathbf{Z} \mathbf{Y}$ with the model consistency
- **2** Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$

minimize	$I_{model}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}))=0$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

- \blacksquare Replace $\mathbf{X} \mathbf{Z} \mathbf{Y}$ with the model consistency
- O Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$

minimize	$I_{model}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}))=0$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

- \blacksquare Replace $\mathbf{X} \mathbf{Z} \mathbf{Y}$ with the model consistency
- O Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
- 8 Relax the equality constraint

minimize	$I_{model}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})) \leq \epsilon$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

- \blacksquare Replace $\mathbf{X} \mathbf{Z} \mathbf{Y}$ with the model consistency
- O Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
- 8 Relax the equality constraint

minimize	$I_{model}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	$D(p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{xy\to}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})) \leq \epsilon$
variables	$q_{\phi}(\mathbf{z} \mathbf{x},\mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z},\mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z},\mathbf{y}), p_{model}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})$

- \blacksquare Replace $\mathbf{X}-\mathbf{Z}-\mathbf{Y}$ with the model consistency
- O Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
- 8 Relax the equality constraint
- Convert to an unconstrained Lagrangian minimization

minimize	$D(p_{\mathrm{model}}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v}),q_{\mathrm{xy}\rightarrow}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{u},\mathbf{v})) + \lambda_{\mathrm{model}}^{\mathrm{CI}}I_{\mathrm{model}}(\mathbf{X},\mathbf{Y};\mathbf{Z})$
subject to	
variables	$q_{\phi}(\mathbf{z} \mathbf{x}, \mathbf{y}), q_{\phi}(\mathbf{u} \mathbf{z}, \mathbf{x}), q_{\phi}(\mathbf{v} \mathbf{z}, \mathbf{y}), p_{model}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}, \mathbf{v})$

- \blacksquare Replace $\mathbf{X} \mathbf{Z} \mathbf{Y}$ with the model consistency
- O Replace $I_{xy \rightarrow}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$ with $I_{model}(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$
- 8 Relax the equality constraint
- Convert to an unconstrained Lagrangian minimization

Experiment. CUB image-caption

• $(\mathbf{X}, \mathbf{Y}) = (bird images, captions)$

the bird has a white body, black wings, and webbed orange feet

a blue bird with gray primaries and secondaries and white breast and throat

Used ResNet-101 features for images

Experiment. CUB image-caption

→(image, caption)

this small bird is black white white with a small bill bill and black feet

this white bird is mostly white white with a long bill, and black feet this bird is grey with grey and has long long, pointy short pointy beak

this hird is grey

with grey and a

black beak . pointy

short pointy beak.

eak. beak.

this is a black and

white black bird

and a short black

this is a black and

white black bird

and a long long

vellow . .

this bird has a

black and and

white and white

this bird has a white and and white and white with and feet. image→caption

breast , with vellow breast and

its feathers

and and and its of

this is a very , and this bird has a very white and and , thin beak with a color with with a , breast and and a long brown beak , the blue patches . .

this bird a small , and yellow black yellow small , color with with black beak and a crown black black breast and a black and black of its feathers , the bird crown it's the borty

this bird has a red this crown and breast , red with red red red with and red and on on red

this bird is a red the bird has red red, red red color red red and a red and and and black red red.

caption→image

Jon Ryu (UCSD)

From Information Theory to Machine Learning Algorithms

June 3, 2022 39 / 28

Experiment. CUB image-caption

• Numerical evaluation: correlation of generated samples

Model	joint	$image{ o}caption$	$caption{\rightarrow}image$
Test set		0.273	
MMVAE [Shi+19] Variational Wyner	0.263 0.303	0.104 0.327	0.135 0.318