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Various engineering / scientific problems can be reduced to “Eigenvalue Problem (EVP)"

A canonical example is the time-independent Schrodinger equation: H|Y) = A|Y)
A standard approach quantizes the problem and solves a matrix EVP — NOT SCALABLE!

The pard metric aPPFOHCh which has become popular recently in quantum chemistry
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Remark: an unconstrained optimization problem!

Comparison to existing methods Simple demonstration: 2D hydrogen atom
NeuralSVD = NestedLoRA + NNs
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Remarks and future directions

SpIN
(aligned)

* QOur approach can naturally perform SVD!

* There is yet another (better) version of nesting! (see full paper)

Ground truth Neu_raISVD NeuralSVD
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* Also applicable to (some) non-compact operators! (see full paper) .
* Various other applications . o . W |- |
 other PDEs (see full paper) full paper + code
* machine learning: correlation analysis / embedding
. p(z,y)
* canonical dependence kernel k(x,y) = see full paper
P () p(z)p(y) ( Paper)

* graph Laplacians
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